In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found ...In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m × n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms.展开更多
Starting from the step-by-step iterative method, the analytical formulas of solutions of the geometrically nonlinear equations of the axisymmetric plates and shallow shells, have been obtained. The uniform convergence...Starting from the step-by-step iterative method, the analytical formulas of solutions of the geometrically nonlinear equations of the axisymmetric plates and shallow shells, have been obtained. The uniform convergence of the iterative method, is used to prove the convergence of the analytical formulas of the exact solutions of the equa- tions.展开更多
基金Project supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20161278)
文摘In this paper, we made a new breakthrough, which proposes a new recursion–transform(RT) method with potential parameters to evaluate the nodal potential in arbitrary resistor networks. For the first time, we found the exact potential formulae of arbitrary m × n cobweb and fan networks by the RT method, and the potential formulae of infinite and semi-infinite networks are derived. As applications, a series of interesting corollaries of potential formulae are given by using the general formula, the equivalent resistance formula is deduced by using the potential formula, and we find a new trigonometric identity by comparing two equivalence results with different forms.
文摘Starting from the step-by-step iterative method, the analytical formulas of solutions of the geometrically nonlinear equations of the axisymmetric plates and shallow shells, have been obtained. The uniform convergence of the iterative method, is used to prove the convergence of the analytical formulas of the exact solutions of the equa- tions.