This paper presents an exact solution for the transverse interface crack in the plane strain case. The crack is perpendicular to the interface and in one material. The exact complex stress functions are first obtained...This paper presents an exact solution for the transverse interface crack in the plane strain case. The crack is perpendicular to the interface and in one material. The exact complex stress functions are first obtained with some unknown constants. The satisfactions of all boundary conditions are then checked, the condition at infinity is considered and the unknown constants are determined. Further study may focus on the case with different shear moduli and the influence of the large deformation.展开更多
In this paper, based on the step reduction method[1] and exact analytic method[2] anew method-exact element method for constructing finite element, is presented. Since the new method doesn 't need the variational ...In this paper, based on the step reduction method[1] and exact analytic method[2] anew method-exact element method for constructing finite element, is presented. Since the new method doesn 't need the variational principle, it can be applied to solve non-positive and positive definite partial differential equations with arbitrary variable coefficient. By this method, a quadrilateral noncompatible element with 8 degrees of freedom is derived for the solution of plane problem. Since Jacobi's transformation is not applied, the present element may degenerate into a triangle element. It is convenient to use the element in engineering. In this paper, the convergence is proved. Numerical examples are given at the endof this paper, which indicate satisfactory results of stress and displacements can be obtained and have higher numerical precision in nodes.展开更多
An assumption that the normal component of the electric displacement on crack faces is thought of as being zero is widely used in analyzing the fracture mechanics of piezoelectric materials. However, it is shown from ...An assumption that the normal component of the electric displacement on crack faces is thought of as being zero is widely used in analyzing the fracture mechanics of piezoelectric materials. However, it is shown from the available experiments that the above assumption will lead to erroneous results. In this paper, the two-dimensional problem of a piezoelectric material with a crack is studied based on the exact electric boundary condition on the crack faces. Stroh formalism is used to obtain the closed-form solutions when the material is subjected to uniform loads at infinity. It is shown from these solutions that: (i) the stress intensify factor is the same as that of isotropic material, while the intensity factor of the electric displacement depends on both material properties and the mechanical loads, but not on the electric load. (ii) the energy release rate in a piezoelectric material is larger than that in a pure elastic-anisotropic material, i.e., it is always positive, and independent of the electric loads. (iii) the field solutions in a piezoelectric material are not related to the dielectric constant of air or vacuum inside the crack.展开更多
For the orthotropic piezoelectric plane problem, a series of piezoelectric beams is solved and the corresponding exact solutions are obtained with the trial-anderror method on the basis of the general solution in the ...For the orthotropic piezoelectric plane problem, a series of piezoelectric beams is solved and the corresponding exact solutions are obtained with the trial-anderror method on the basis of the general solution in the case of three distinct eigenvalues, in which all displacements, electrical potential, stresses and electrical displacements are expressed by three displacement functions in terms of harmonic polynomials. These problems are rectangular beams having rigid body displacements and identical electrical potential, rectangular beams under uniform tension and electric displacement as well as pure shearing and pure bending, beams of two free ends subjected to uniform electrical potential on the upper and lower surfaces.展开更多
将VRPTW(Vehicle Routing Problem with Time Window)通过D-W分解划分为主问题为集合划分以及子问题为带资源约束的基本最短路径问题,对子问题以割平面回调形式加入两点加强割集不等式来消除网络流中的子回路,并通过二维车流模型代替分...将VRPTW(Vehicle Routing Problem with Time Window)通过D-W分解划分为主问题为集合划分以及子问题为带资源约束的基本最短路径问题,对子问题以割平面回调形式加入两点加强割集不等式来消除网络流中的子回路,并通过二维车流模型代替分支定界过程求得精确解,对有效的提升算法求解速度提供了一种新思路。展开更多
文摘This paper presents an exact solution for the transverse interface crack in the plane strain case. The crack is perpendicular to the interface and in one material. The exact complex stress functions are first obtained with some unknown constants. The satisfactions of all boundary conditions are then checked, the condition at infinity is considered and the unknown constants are determined. Further study may focus on the case with different shear moduli and the influence of the large deformation.
文摘In this paper, based on the step reduction method[1] and exact analytic method[2] anew method-exact element method for constructing finite element, is presented. Since the new method doesn 't need the variational principle, it can be applied to solve non-positive and positive definite partial differential equations with arbitrary variable coefficient. By this method, a quadrilateral noncompatible element with 8 degrees of freedom is derived for the solution of plane problem. Since Jacobi's transformation is not applied, the present element may degenerate into a triangle element. It is convenient to use the element in engineering. In this paper, the convergence is proved. Numerical examples are given at the endof this paper, which indicate satisfactory results of stress and displacements can be obtained and have higher numerical precision in nodes.
文摘An assumption that the normal component of the electric displacement on crack faces is thought of as being zero is widely used in analyzing the fracture mechanics of piezoelectric materials. However, it is shown from the available experiments that the above assumption will lead to erroneous results. In this paper, the two-dimensional problem of a piezoelectric material with a crack is studied based on the exact electric boundary condition on the crack faces. Stroh formalism is used to obtain the closed-form solutions when the material is subjected to uniform loads at infinity. It is shown from these solutions that: (i) the stress intensify factor is the same as that of isotropic material, while the intensity factor of the electric displacement depends on both material properties and the mechanical loads, but not on the electric load. (ii) the energy release rate in a piezoelectric material is larger than that in a pure elastic-anisotropic material, i.e., it is always positive, and independent of the electric loads. (iii) the field solutions in a piezoelectric material are not related to the dielectric constant of air or vacuum inside the crack.
文摘For the orthotropic piezoelectric plane problem, a series of piezoelectric beams is solved and the corresponding exact solutions are obtained with the trial-anderror method on the basis of the general solution in the case of three distinct eigenvalues, in which all displacements, electrical potential, stresses and electrical displacements are expressed by three displacement functions in terms of harmonic polynomials. These problems are rectangular beams having rigid body displacements and identical electrical potential, rectangular beams under uniform tension and electric displacement as well as pure shearing and pure bending, beams of two free ends subjected to uniform electrical potential on the upper and lower surfaces.
文摘将VRPTW(Vehicle Routing Problem with Time Window)通过D-W分解划分为主问题为集合划分以及子问题为带资源约束的基本最短路径问题,对子问题以割平面回调形式加入两点加强割集不等式来消除网络流中的子回路,并通过二维车流模型代替分支定界过程求得精确解,对有效的提升算法求解速度提供了一种新思路。