By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of ...By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.展开更多
In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik...In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik-Novikov-Veselov equations are obtained. It is shown that the new method is much more powerful in finding new exact solutions to various kinds of nonlinear evolution equations in mathematical physics.展开更多
In this paper, we improve the method for deriving Jacobi elliptic function solutions of nonlinear evolution equations given in Ref. [12] and apply it to the integrable higher-order Broer-Kaup system in (2+1)-dimens...In this paper, we improve the method for deriving Jacobi elliptic function solutions of nonlinear evolution equations given in Ref. [12] and apply it to the integrable higher-order Broer-Kaup system in (2+1)-dimensional spaces. Some new elliptic function" solutions are obtained.展开更多
Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct dou...Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.展开更多
The modified mapping method is further improved by the expanded expression of u(ξ) that contains the terms of the first-order derivative of function f(ξ). Some new exact solutions to the mBBM equation are determ...The modified mapping method is further improved by the expanded expression of u(ξ) that contains the terms of the first-order derivative of function f(ξ). Some new exact solutions to the mBBM equation are determined by means of the method. We can obtain many new solutions in terms of the Jacobi elliptic functions of the equation.展开更多
In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of ...In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.展开更多
This paper presents a closed form solution to the dynamic stability problem of a beam-column system with hinged ends loaded by an axial periodically time-varying compressive force of an elliptic type,i.e.,a1cn 2(τ,...This paper presents a closed form solution to the dynamic stability problem of a beam-column system with hinged ends loaded by an axial periodically time-varying compressive force of an elliptic type,i.e.,a1cn 2(τ,k 2)+a2sn 2(τ,k 2)+a3dn 2(τ,k 2).The solution to the governing equation is obtained in the form of Fourier sine series.The resulting ordinary differential equation is solved analytically.Finding the exact analytical solutions to the dynamic buckling problems is difficult.However,the availability of exact solutions can provide adequate understanding for the physical characteristics of the system.In this study,the frequency-response characteristics of the system,the effects of the static load,the driving forces,and the frequency ratio on the critical buckling load are also investigated.展开更多
In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evo...In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+ 1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.展开更多
The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the applicat...The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.展开更多
The Zakharov equation to describe the laser plasma interaction process has very important sense, this paper gives the solitary wave solutions for Zakharov equation by using Jacobi elliptic function method.
In this paper, based on the generalized Jacobi elliptic function expansion method, we obtain abundant new explicit and exact solutions of the Klein-Gordon- Zakharov equations, which degenerate to solitary wave solutio...In this paper, based on the generalized Jacobi elliptic function expansion method, we obtain abundant new explicit and exact solutions of the Klein-Gordon- Zakharov equations, which degenerate to solitary wave solutions and triangle function solutions in the limit cases, showing that this new method is more powerful to seek exact solutions of nonlinear partial differential equations in mathematical physics.展开更多
To construct the infinite sequence new exact solutions of nonlinear evolution equations and study the first kind of elliptic function, new solutions and the corresponding B^cklund transformation of the equation are pr...To construct the infinite sequence new exact solutions of nonlinear evolution equations and study the first kind of elliptic function, new solutions and the corresponding B^cklund transformation of the equation are presented. Based on this, the generalized pentavalent KdV equation and the breaking soliton equation are chosen as applicable examples and infinite sequence smooth soliton solutions, infinite sequence peak solitary wave solutions and infinite sequence compact soliton solutions are obtained with the help of symbolic computation system Mathematica. The method is of significance to search for infinite sequence new exact solutions to other nonlinear evolution equations.展开更多
New exact solutions expressed by the Jacobi elliptic functions are obtained to the (2+1)-dimensional dispersive long-wave equations by using the modified F-expansion method. In the limit case, new solitary wave sol...New exact solutions expressed by the Jacobi elliptic functions are obtained to the (2+1)-dimensional dispersive long-wave equations by using the modified F-expansion method. In the limit case, new solitary wave solutions and triangular periodic wave solutions are obtained as well.展开更多
The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. ...The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. More solutions in the Jacobi elliptic function form are obtained, including the single Jacobi elliptic function solutions, combined Jacobi elliptic function solutions, rational solutions, triangular solutions, soliton solutions and combined soliton solutions.展开更多
New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangu...New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangular periodic wave solutions are obtained as well.展开更多
In this letter, abundant families of Jacobi elliptic function envelope solutions of the N-coupled nonlinear Schroedinger (NLS) system are obtained directly. When the modulus m → 1, those periodic solutions degenera...In this letter, abundant families of Jacobi elliptic function envelope solutions of the N-coupled nonlinear Schroedinger (NLS) system are obtained directly. When the modulus m → 1, those periodic solutions degenerate as the corresponding envelope soliton solutions, envelope shock wave solutions. Especially, for the 3-coupled NLS system, five types of Jacobi elliptic function envelope solutions are illustrated both analytically and graphically. Two types of those degenerate as envelope soliton solutions.展开更多
In this paper, new Jacobi elliptic function solutions of multi-component mKdV equation are obtained directly in a unified way. When the modulus m → 1, those periodic solutions degenerate as the corresponding hyperbol...In this paper, new Jacobi elliptic function solutions of multi-component mKdV equation are obtained directly in a unified way. When the modulus m → 1, those periodic solutions degenerate as the corresponding hyperbolic function solutions. Then, to the three-component mKdV equation, five types of effective solution are presented in detail.展开更多
New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein-Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's pa...New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein-Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's parameters and travelling wave transformation parameters. Some figures for a specific kind of solution are also presented.展开更多
Jacobi elliptic function expansion method is extended to construct the exact solutions to another kind of KdV equations, which have variable coefficients or forcing terms. And new periodic solutions obtained by this m...Jacobi elliptic function expansion method is extended to construct the exact solutions to another kind of KdV equations, which have variable coefficients or forcing terms. And new periodic solutions obtained by this method can be reduced to the soliton-typed solutions under the limited condition.展开更多
(2 + 1) dimensional Boussinesq and Kadomtsev-Petviashvili equation are investigated by employing Jacobi elliptic function expansion method in this paper. As a result, some new forms traveling wave solutions of the equ...(2 + 1) dimensional Boussinesq and Kadomtsev-Petviashvili equation are investigated by employing Jacobi elliptic function expansion method in this paper. As a result, some new forms traveling wave solutions of the equation are reported. Numerical simulation results are shown. These new solutions may be important for the explanation of some practical physical problems. The results of this paper show that Jacobi elliptic function method can be a useful tool in obtaining evolution solutions of nonlinear system.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No 10461006), the High Education Science Research Program(Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University(Grant No QN005023).
文摘By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.
基金The Scientific Research Foundation (QKJA2010011) of Nanjing Institute of Technology
文摘In this paper, a new generalized Jacobi elliptic function expansion method based upon four new Jacobi elliptic functions is described and abundant solutions of new Jacobi elliptic functions for the generalized Nizhnik-Novikov-Veselov equations are obtained. It is shown that the new method is much more powerful in finding new exact solutions to various kinds of nonlinear evolution equations in mathematical physics.
基金The project supported by National Natural Science Foundation of China under Grant No. 10471096
文摘In this paper, we improve the method for deriving Jacobi elliptic function solutions of nonlinear evolution equations given in Ref. [12] and apply it to the integrable higher-order Broer-Kaup system in (2+1)-dimensional spaces. Some new elliptic function" solutions are obtained.
文摘Some doubly-periodic solutions of the Zakharov-Kuznetsov equation are presented. Our approach is to introduce an auxiliary ordinary differential equation and use its Jacobi elliptic function solutions to construct doubly-periodic solutions of the Zakharov-Kuznetsov equation, which has been derived by Gottwald as a two-dimensional model for nonlinear Rossby waves. When the modulus k →1, these solutions reduce to the solitary wave solutions of the equation.
基金The project supported by the Science and Technology Foundation of Cuizhou Province of China under Grant No. 20072009
文摘The modified mapping method is further improved by the expanded expression of u(ξ) that contains the terms of the first-order derivative of function f(ξ). Some new exact solutions to the mBBM equation are determined by means of the method. We can obtain many new solutions in terms of the Jacobi elliptic functions of the equation.
文摘In this paper, an extended Jacobi elliptic function rational expansion method is proposed for constructing new forms of exact Jacobi elliptic function solutions to nonlinear partial differential equations by means of making a more general transformation. For illustration, we apply the method to the (2+1)-dimensional dispersive long wave equation and successfully obtain many new doubly periodic solutions, which degenerate as soliton solutions when the modulus m approximates 1. The method can also be applied to other nonlinear partial differential equations.
文摘This paper presents a closed form solution to the dynamic stability problem of a beam-column system with hinged ends loaded by an axial periodically time-varying compressive force of an elliptic type,i.e.,a1cn 2(τ,k 2)+a2sn 2(τ,k 2)+a3dn 2(τ,k 2).The solution to the governing equation is obtained in the form of Fourier sine series.The resulting ordinary differential equation is solved analytically.Finding the exact analytical solutions to the dynamic buckling problems is difficult.However,the availability of exact solutions can provide adequate understanding for the physical characteristics of the system.In this study,the frequency-response characteristics of the system,the effects of the static load,the driving forces,and the frequency ratio on the critical buckling load are also investigated.
基金The project partially supported by the State Key Basic Research Program of China under Grant No. 2004CB318000
文摘In this work, by means of a generalized method and symbolic computation, we extend the Jacobi elliptic function rational expansion method to uniformly construct a series of stochastic wave solutions for stochastic evolution equations. To illustrate the effectiveness of our method, we take the (2+ 1)-dimensional stochastic dispersive long wave system as an example. We not only have obtained some known solutions, but also have constructed some new rational formal stochastic Jacobi elliptic function solutions.
基金the State Key Programme of Basic Research of China under,高等学校博士学科点专项科研项目
文摘The Jacobi elliptic function expansion method is extended to derive the explicit periodic wave solutions for nonlinear differential-difference equations. Three well-known examples are chosen to illustrate the application of the Jacobi elliptic function expansion method. As a result, three types of periodic wave solutions including Jacobi elliptic sine function, Jacobi elliptic cosine function and the third elliptic function solutions are obtained. It is shown that the shock wave solutions and solitary wave solutions can be obtained at their limit condition.
文摘The Zakharov equation to describe the laser plasma interaction process has very important sense, this paper gives the solitary wave solutions for Zakharov equation by using Jacobi elliptic function method.
基金The Scientific Research Foundation (KXJ08047) of NanJing Institute of Technology
文摘In this paper, based on the generalized Jacobi elliptic function expansion method, we obtain abundant new explicit and exact solutions of the Klein-Gordon- Zakharov equations, which degenerate to solitary wave solutions and triangle function solutions in the limit cases, showing that this new method is more powerful to seek exact solutions of nonlinear partial differential equations in mathematical physics.
基金supported by the National Natural Science Foundation of China(Grant No.10862003)the Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region,China(Grant No.NJZZ07031)the Natural Science Foundation of Inner Mongolia Autonomous Region,China(Grant No.2010MS0111)
文摘To construct the infinite sequence new exact solutions of nonlinear evolution equations and study the first kind of elliptic function, new solutions and the corresponding B^cklund transformation of the equation are presented. Based on this, the generalized pentavalent KdV equation and the breaking soliton equation are chosen as applicable examples and infinite sequence smooth soliton solutions, infinite sequence peak solitary wave solutions and infinite sequence compact soliton solutions are obtained with the help of symbolic computation system Mathematica. The method is of significance to search for infinite sequence new exact solutions to other nonlinear evolution equations.
基金The project supported by the Natural Science Foundation of Shandong Province of China under Grant No. 2004 zx16
文摘New exact solutions expressed by the Jacobi elliptic functions are obtained to the (2+1)-dimensional dispersive long-wave equations by using the modified F-expansion method. In the limit case, new solitary wave solutions and triangular periodic wave solutions are obtained as well.
基金Project supported by the National Nature Science Foundation of China (Grant No 49894190) of the Chinese Academy of Science (Grant No KZCXI-sw-18), and Knowledge Innovation Program.
文摘The extended F-expansion method or mapping method is used to construct exact solutions for the coupled KleinGordon Schr/Sdinger equations (K-G-S equations) by the aid of the symbolic computation system Mathematica. More solutions in the Jacobi elliptic function form are obtained, including the single Jacobi elliptic function solutions, combined Jacobi elliptic function solutions, rational solutions, triangular solutions, soliton solutions and combined soliton solutions.
文摘New exact solutions expressed by the Jacobi elliptic functions are obtained to the long-short wave interaction equations by using the modified F-expansion method. In the limit case, solitary wave solutions and triangular periodic wave solutions are obtained as well.
基金The project partially supported by the Foundation of Zhejiang University of Technology, the Education Foundation of Zhejiang Province of China under Grant No. 2003055, and the Foundation of Zhejiang Forestry College under Grant No. 2002FK15 Acknowledgments We would like to express our sincere thanks to the referees for useful suggestion and timely help.
文摘In this letter, abundant families of Jacobi elliptic function envelope solutions of the N-coupled nonlinear Schroedinger (NLS) system are obtained directly. When the modulus m → 1, those periodic solutions degenerate as the corresponding envelope soliton solutions, envelope shock wave solutions. Especially, for the 3-coupled NLS system, five types of Jacobi elliptic function envelope solutions are illustrated both analytically and graphically. Two types of those degenerate as envelope soliton solutions.
基金The project supported by the Education Foundation of Zhejiang Province of China under Grant No. 20030557 and the Science Foundation of Zhejiang Forestry College
文摘In this paper, new Jacobi elliptic function solutions of multi-component mKdV equation are obtained directly in a unified way. When the modulus m → 1, those periodic solutions degenerate as the corresponding hyperbolic function solutions. Then, to the three-component mKdV equation, five types of effective solution are presented in detail.
文摘New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein-Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's parameters and travelling wave transformation parameters. Some figures for a specific kind of solution are also presented.
文摘Jacobi elliptic function expansion method is extended to construct the exact solutions to another kind of KdV equations, which have variable coefficients or forcing terms. And new periodic solutions obtained by this method can be reduced to the soliton-typed solutions under the limited condition.
文摘(2 + 1) dimensional Boussinesq and Kadomtsev-Petviashvili equation are investigated by employing Jacobi elliptic function expansion method in this paper. As a result, some new forms traveling wave solutions of the equation are reported. Numerical simulation results are shown. These new solutions may be important for the explanation of some practical physical problems. The results of this paper show that Jacobi elliptic function method can be a useful tool in obtaining evolution solutions of nonlinear system.