The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple ba...The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.展开更多
In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial f...In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.展开更多
The departure at large times from exponential decay in the case of resonance wavefunctions is mathematically demonstrated. Then, exact, analytical solutions to the time-dependent Schr?dinger equation in one dimension ...The departure at large times from exponential decay in the case of resonance wavefunctions is mathematically demonstrated. Then, exact, analytical solutions to the time-dependent Schr?dinger equation in one dimension are developed for a time-independent potential consisting of an infinite wall and a repulsive delta function. The exact solutions are obtained by means of a superposition of time-independent solutions spanning the given Hilbert space with appropriately chosen spectral functions for which the resulting integrals can be evaluated exactly. Square-integrability and the boundary conditions are satisfied. The simplest of the obtained solutions is presented and the probability for the particle to be found inside the potential well as a function of time is calculated. The system exhibits non-exponential decay for all times;the probability decreases at large times as . Other exact solutions found exhibit power law behavior at large times. The results are generalized to all normalizable solutions to this problem. Additionally, numerical solutions are obtained using the staggered leap-frog algorithm for select potentials exhibiting the prevalence of non-exponential decay at short times.展开更多
Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and eve...Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and even in quantum mechanics. But all these equations are most often studied without worrying about what would happen if this equation were maintained, that is to say, had a second member synonymous with an external force. It is true that on a physical level, such equations can be considered as describing the generation of waves on a waveguide using an external force. However, the in-depth analysis of this aspect is not at the center of our reflection in this article, but for us, it is a question of proposing exact solutions to this type of equation and above all proposing the general form of the external force so that the obtaining exact solutions is possible.展开更多
In this article, we investigate the hyperbolic geometry flow with time-dependent dissipation(δ2 gij)/δt2+μ/((1 + t)λ)(δ gij)/δt=-2 Rij,on Riemann surface. On the basis of the energy method, for 0 〈 λ...In this article, we investigate the hyperbolic geometry flow with time-dependent dissipation(δ2 gij)/δt2+μ/((1 + t)λ)(δ gij)/δt=-2 Rij,on Riemann surface. On the basis of the energy method, for 0 〈 λ ≤ 1, μ 〉 λ + 1, we show that there exists a global solution gij to the hyperbolic geometry flow with time-dependent dissipation with asymptotic flat initial Riemann surfaces. Moreover, we prove that the scalar curvature R(t, x) of the solution metric gij remains uniformly bounded.展开更多
A numerical method based on B-spline is developed to solve the time-dependent Emden-Fow- ler-type equations. We also present a reliable new algorithm based on B-spline to overcome the difficulty of the singular point ...A numerical method based on B-spline is developed to solve the time-dependent Emden-Fow- ler-type equations. We also present a reliable new algorithm based on B-spline to overcome the difficulty of the singular point at x = 0. The error analysis of the method is described. Numerical results are given to illustrate the efficiency of the proposed method.展开更多
In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation i...In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation is presented by Lewis-Riesenfield invariant method.展开更多
The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-f...The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-form natural mode satisfies the governing equation of the eigenvalue problem of thin plate exactly and is applicable for any types of boundary conditions. With all combinations of simplysupported (S) and clamped (C) boundary conditions applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalue equations are derived with respect to two spatial coordinates, with the aid of which the normal modes and frequencies are solved exactly. It was believed that the exact eigensolutions for cases SSCC, SCCC and CCCC were unable to be obtained, however, they are successfully found in this paper. Comparisons between the present results and the FEM results validate the present exact solutions, which can thus be taken as the benchmark for verifying different approximate approaches.展开更多
By using an improved projective Riccati equation method, this paper obtains several types of exact travelling wave solutions to the Benjamin Ono equation which include multiple soliton solutions, periodic soliton solu...By using an improved projective Riccati equation method, this paper obtains several types of exact travelling wave solutions to the Benjamin Ono equation which include multiple soliton solutions, periodic soliton solutions and Weierstrass function solutions. Some of them are found for the first time. The method can be applied to other nonlinear evolution equations in mathematical physics.展开更多
In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzent...In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.展开更多
Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference...Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.展开更多
By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of ...By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.展开更多
By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and non...By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given.展开更多
Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equation...Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.展开更多
The invariant sets and exact solutions of the (1 + 2)-dimensional wave equations are discussed. It is shown that there exist a class of solutions to the equations which belong to the invariant set E0 = {u : ux = ...The invariant sets and exact solutions of the (1 + 2)-dimensional wave equations are discussed. It is shown that there exist a class of solutions to the equations which belong to the invariant set E0 = {u : ux = vxF(u),uy = vyF(u) }. This approach is also developed to solve (1 + N)-dimensional wave equations.展开更多
Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived sol...Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived solitary wave solution, we obtain some specific chaotic solitons to the (2+1)-dimensional GBK system.展开更多
This paper presents an exact solution for the transverse interface crack in the plane strain case. The crack is perpendicular to the interface and in one material. The exact complex stress functions are first obtained...This paper presents an exact solution for the transverse interface crack in the plane strain case. The crack is perpendicular to the interface and in one material. The exact complex stress functions are first obtained with some unknown constants. The satisfactions of all boundary conditions are then checked, the condition at infinity is considered and the unknown constants are determined. Further study may focus on the case with different shear moduli and the influence of the large deformation.展开更多
An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS...An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented.展开更多
Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer alg...Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.展开更多
文摘The new independent solutions of the nonlinear differential equation with time-dependent coefficients (NDE-TC) are discussed, for the first time, by employing experimental device called a drinking bird whose simple back-and-forth motion develops into water drinking motion. The solution to a drinking bird equation of motion manifests itself the transition from thermodynamic equilibrium to nonequilibrium irreversible states. The independent solution signifying a nonequilibrium thermal state seems to be constructed as if two independent bifurcation solutions are synthesized, and so, the solution is tentatively termed as the bifurcation-integration solution. The bifurcation-integration solution expresses the transition from mechanical and thermodynamic equilibrium to a nonequilibrium irreversible state, which is explicitly shown by the nonlinear differential equation with time-dependent coefficients (NDE-TC). The analysis established a new theoretical approach to nonequilibrium irreversible states, thermomechanical dynamics (TMD). The TMD method enables one to obtain thermodynamically consistent and time-dependent progresses of thermodynamic quantities, by employing the bifurcation-integration solutions of NDE-TC. We hope that the basic properties of bifurcation-integration solutions will be studied and investigated further in mathematics, physics, chemistry and nonlinear sciences in general.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.11071177)
文摘In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.
文摘The departure at large times from exponential decay in the case of resonance wavefunctions is mathematically demonstrated. Then, exact, analytical solutions to the time-dependent Schr?dinger equation in one dimension are developed for a time-independent potential consisting of an infinite wall and a repulsive delta function. The exact solutions are obtained by means of a superposition of time-independent solutions spanning the given Hilbert space with appropriately chosen spectral functions for which the resulting integrals can be evaluated exactly. Square-integrability and the boundary conditions are satisfied. The simplest of the obtained solutions is presented and the probability for the particle to be found inside the potential well as a function of time is calculated. The system exhibits non-exponential decay for all times;the probability decreases at large times as . Other exact solutions found exhibit power law behavior at large times. The results are generalized to all normalizable solutions to this problem. Additionally, numerical solutions are obtained using the staggered leap-frog algorithm for select potentials exhibiting the prevalence of non-exponential decay at short times.
文摘Schrödinger equations are very common equations in physics and mathematics for nonlinear physics to model the dynamics of wave propagation in waveguides such as power lines, atomic chains, optical fibers, and even in quantum mechanics. But all these equations are most often studied without worrying about what would happen if this equation were maintained, that is to say, had a second member synonymous with an external force. It is true that on a physical level, such equations can be considered as describing the generation of waves on a waveguide using an external force. However, the in-depth analysis of this aspect is not at the center of our reflection in this article, but for us, it is a question of proposing exact solutions to this type of equation and above all proposing the general form of the external force so that the obtaining exact solutions is possible.
基金supported in part by the NNSF of China(11271323,91330105)the Zhejiang Provincial Natural Science Foundation of China(LZ13A010002)the Science Foundation in Higher Education of Henan(18A110036)
文摘In this article, we investigate the hyperbolic geometry flow with time-dependent dissipation(δ2 gij)/δt2+μ/((1 + t)λ)(δ gij)/δt=-2 Rij,on Riemann surface. On the basis of the energy method, for 0 〈 λ ≤ 1, μ 〉 λ + 1, we show that there exists a global solution gij to the hyperbolic geometry flow with time-dependent dissipation with asymptotic flat initial Riemann surfaces. Moreover, we prove that the scalar curvature R(t, x) of the solution metric gij remains uniformly bounded.
文摘A numerical method based on B-spline is developed to solve the time-dependent Emden-Fow- ler-type equations. We also present a reliable new algorithm based on B-spline to overcome the difficulty of the singular point at x = 0. The error analysis of the method is described. Numerical results are given to illustrate the efficiency of the proposed method.
文摘In this paper, the time-dependent invariant of the Dirac equation with time-dependent linear potential has been constructed in non-commutative phase space. The corresponding analytical solution of the Dirac equation is presented by Lewis-Riesenfield invariant method.
基金supported by the National Natural Science Foundation of China (10772014)
文摘The separation of variables is employed to solve Hamiltonian dual form of eigenvalue problem for transverse free vibrations of thin plates, and formulation of the natural mode in closed form is performed. The closed-form natural mode satisfies the governing equation of the eigenvalue problem of thin plate exactly and is applicable for any types of boundary conditions. With all combinations of simplysupported (S) and clamped (C) boundary conditions applied to the natural mode, the mode shapes are obtained uniquely and two eigenvalue equations are derived with respect to two spatial coordinates, with the aid of which the normal modes and frequencies are solved exactly. It was believed that the exact eigensolutions for cases SSCC, SCCC and CCCC were unable to be obtained, however, they are successfully found in this paper. Comparisons between the present results and the FEM results validate the present exact solutions, which can thus be taken as the benchmark for verifying different approximate approaches.
文摘By using an improved projective Riccati equation method, this paper obtains several types of exact travelling wave solutions to the Benjamin Ono equation which include multiple soliton solutions, periodic soliton solutions and Weierstrass function solutions. Some of them are found for the first time. The method can be applied to other nonlinear evolution equations in mathematical physics.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region (Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University (Grant No QN005023).
文摘In this paper, based on hyperbolic tanh-function method and homogeneous balance method, and auxiliary equation method, some new exact solitary solutions to the generalized mKdV equation and generalized Zakharov-Kuzentsov equation are constructed by the method of auxiliary equation with function transformation with aid of symbolic computation system Mathematica. The method is of important significance in seeking new exact solutions to the evolution equation with arbitrary nonlinear term.
基金Project supported by the National Natural Science Foundation of China (Grant No 10461006), the Natural Science Foundation (Grant No 200408020103), the High Education Science Research Program (Grant No NJ02035) of Inner Mongolia, China and the Youth Foundation (Grant No QN004024) of Inner Mongolia Normal University, China.
文摘Some new exact solitary wave solutions of the Hybrid lattice and discrete mKdV lattice are obtained by using a hyperbolic function approach. This approach can also be applied to other nonlinear differential-difference equations.
基金Project supported by the National Natural Science Foundation of China(Grant No 10461006), the High Education Science Research Program(Grant No NJ02035) of Inner Mongolia Autonomous Region, Natural Science Foundation of Inner Mongolia Autonomous Region(Grant No 2004080201103) and the Youth Research Program of Inner Mongolia Normal University(Grant No QN005023).
文摘By use of an auxiliary equation and through a function transformation, the Jacobi elliptic function wave-like solutions, the degenerated soliton-like solutions and the triangle function wave solutions to two kinds of Korteweg de Vries (KdV) equations with variable coefficients and a KdV equation with a forcible term are constructed with the help of symbolic computation system Mathematica, where the new solutions are also constructed.
基金Supported by the Develop Programme Foundation of the National Basic research(G1 9990 3 2 80 1 )
文摘By asing the nonclassical method of symmetry reductions, the exact solutions for general variable coefficient KdV equation with dissipative loss and nonuniformity terms are obtained. When the dissipative loss and nonuniformity terms don't exist, the multisoliton solutions are found and the corresponding Painleve II type equation for the variable coefficient KdV equation is given.
基金Supported by the Natural Science Foundation of Zhejiang Province(1 0 2 0 3 7)
文摘Nonlinear partial differetial equation(NLPDE) is converted into ordinary differential equation(ODE) via a new ansatz.Using undetermined function method,the ODE obtained above is replaced by a set of algebraic equations which are solved out with the aid of Mathematica.The exact solutions and solitary solutions of NLPDE are obtained.
基金The project supported by National Natural Science Foundation of China under Grant Nos.10447007 and 10671156Natural Science Foundation of Shaanxi Province of China under Grant No.2005A13
文摘The invariant sets and exact solutions of the (1 + 2)-dimensional wave equations are discussed. It is shown that there exist a class of solutions to the equations which belong to the invariant set E0 = {u : ux = vxF(u),uy = vyF(u) }. This approach is also developed to solve (1 + N)-dimensional wave equations.
基金浙江省自然科学基金,Foundation of New Century "151 Talent Engineering" of Zhejiang Province,丽水学院校科研和教改项目,the Scientific Research Foundation of Key Discipline of Zhejiang Province
文摘Starting from an extended mapping approach, a new type of variable separation solution with arbitrary functions of generalized (2+1)-dimensional Broer-Kaup system (GBK) system is derived. Then based on the derived solitary wave solution, we obtain some specific chaotic solitons to the (2+1)-dimensional GBK system.
文摘This paper presents an exact solution for the transverse interface crack in the plane strain case. The crack is perpendicular to the interface and in one material. The exact complex stress functions are first obtained with some unknown constants. The satisfactions of all boundary conditions are then checked, the condition at infinity is considered and the unknown constants are determined. Further study may focus on the case with different shear moduli and the influence of the large deformation.
文摘An analytical solution of the governing equations of the interacting shear flows for unsteady oblique stagnation point flow is obtained. It has the same form as that of the exact solution obtained from the complete NS equations and physical analysis and relevant discussions are then presented.
基金The project supported by National Natural Science Foundation of China under Grant No.10072013the National Key Basic Research Development Program under Grant No.G1998030600
文摘Applying the generalized method, which is a direct and unified algebraic method for constructing multipletravelling wave solutions of nonlinear partial differential equations (PDEs), and implementing in a computer algebraicsystem, we consider the generalized Zakharov-Kuzentsov equation with nonlinear terms of any order. As a result, wecan not only successfully recover the previously known travelling wave solutions found by existing various tanh methodsand other sophisticated methods, but also obtain some new formal solutions. The solutions obtained include kink-shapedsolitons, bell-shaped solitons, singular solitons, and periodic solutions.