In this paper we discuss the differences and relationship between"great earthquakes",rare ground motion,and very rare ground motion.Taking the Beichuan-Yingxiu potential seismic source zone in Longmenshan se...In this paper we discuss the differences and relationship between"great earthquakes",rare ground motion,and very rare ground motion.Taking the Beichuan-Yingxiu potential seismic source zone in Longmenshan seismic belt as an example,we revealed the relationship between the effects of"great earthquakes"and rare ground and very rare ground motion.After pointing out scientific and technical problems in the current seismic fortification system,we suggest that very rare ground motion should be considered if we want to deduce the potential hazard of great earthquakes in the future.展开更多
Recent studies on assessment of a very low annual probability of exceeding (APE) ground motions, 10-4 or less, have highlighted the importance of the upper bound of ground motions when very low probability results a...Recent studies on assessment of a very low annual probability of exceeding (APE) ground motions, 10-4 or less, have highlighted the importance of the upper bound of ground motions when very low probability results are acquired. The truncation level adopted in probabilistic seismic hazard analysis (PSHA) should be determined by an aleatory uncertainty model (i.e., distribution model) of ground motions and the possible maximum and minimum ground motion values of a specific earthquake. However, at the present time, it is impossible to establish the upper bound model for ground motions based on the source characteristics and/or ground motion propagation. McGuire suggested a truncation level be fixed at a number of = 6, or the distribution of residuals be truncated in such a manner that site intensity cannot be greater than the epicenter intensity. This study aims to find a reasonable and feasible truncation level to be used in PSHA when the physical mechanism is not available to find the extreme ground motion. A mathematical analysis of the influence of the truncation level on PSHA, case studies of sites in different seismotectonic settings, and a distribution analysis of ground motion residuals are conducted in this study. It is concluded that = 4 is the minimum acceptable value for engineering applications for APEs within 0.002 to 10-4, and for low APEs, such as 10-5 and 10-6, the value of should be no less than 5 in most regions of China.展开更多
Based on the calculation of the bedrock effective peak acceleration (EPA) zoning map in the Panxi area, the ratios of EPA with exceedance probabilities of 63%, 5%, 3%, 2% and 1% over 50 years to that of 10% in 50 year...Based on the calculation of the bedrock effective peak acceleration (EPA) zoning map in the Panxi area, the ratios of EPA with exceedance probabilities of 63%, 5%, 3%, 2% and 1% over 50 years to that of 10% in 50 years are 0.302, 1.30, 1.55, 1.76 and 2.14, respectively. The seismic effect will be conservative and safe if taking this zoning map as the earthquake resistant fortification level and following the relevant rules of the Code for Seismic Design of Buildings (GBJ11 89) to calculate the seismic effect. Furthermore, the main factors that influence the A10/A63 ratios have been found to be the attenuation relationship of seismic ground motion, the division of seismic potential source regions and the seismicity parameters. These achievements are helpful to the spreading and applying of the zoning map.展开更多
The determination of collapse margin ratio(CMR)of structure is influenced by many uncertain factors.Some factors that can affect the calculation of CMR,e.g.,the elongation of the structural fundamental period prior to...The determination of collapse margin ratio(CMR)of structure is influenced by many uncertain factors.Some factors that can affect the calculation of CMR,e.g.,the elongation of the structural fundamental period prior to collapse,the determination of earthquake intensity measure,the seismic hazard probability,and the difference of the spectral shapes between the median spectrum of the ground motions and the design spectrum,were discussed.Considering the elongation of the structural fundamental period,the intensity measure Sa(T1)should be replaced with *aS in the calculation of CMR for short-period and medium-period structures.The reasonable intensity measure should be determined by the correlation analysis between the earthquake intensity measure and the damage index of the structure.Otherwise,CMR should be adjusted according to the seismic hazard probability and the difference in the spectral shapes.For important long-period structures,CMR should be determined by the special site spectrum.The results indicate that both Sa(T1)and spectrum intensity(SI)could be used as intensity measures in the calculation of CMR for medium-period structures,but SI would be a better choice for long-period structures.Moreover,an adjusted CMR that reflects the actual seismic collapse safety of structures is provided.展开更多
基金funded by Special Project of Scientific Research in the Field of Earthquake Science,China Earthquake Administration(201308018 and 201108002)
文摘In this paper we discuss the differences and relationship between"great earthquakes",rare ground motion,and very rare ground motion.Taking the Beichuan-Yingxiu potential seismic source zone in Longmenshan seismic belt as an example,we revealed the relationship between the effects of"great earthquakes"and rare ground and very rare ground motion.After pointing out scientific and technical problems in the current seismic fortification system,we suggest that very rare ground motion should be considered if we want to deduce the potential hazard of great earthquakes in the future.
基金Program of Seismic Ground Motion Parameter Zonation Map of Chinathe Basic Research Fund of the Institute of Geophysics Under Grant No.DQJB11C18the Special Funds for Science and Technology Research Under Grant No.200708003
文摘Recent studies on assessment of a very low annual probability of exceeding (APE) ground motions, 10-4 or less, have highlighted the importance of the upper bound of ground motions when very low probability results are acquired. The truncation level adopted in probabilistic seismic hazard analysis (PSHA) should be determined by an aleatory uncertainty model (i.e., distribution model) of ground motions and the possible maximum and minimum ground motion values of a specific earthquake. However, at the present time, it is impossible to establish the upper bound model for ground motions based on the source characteristics and/or ground motion propagation. McGuire suggested a truncation level be fixed at a number of = 6, or the distribution of residuals be truncated in such a manner that site intensity cannot be greater than the epicenter intensity. This study aims to find a reasonable and feasible truncation level to be used in PSHA when the physical mechanism is not available to find the extreme ground motion. A mathematical analysis of the influence of the truncation level on PSHA, case studies of sites in different seismotectonic settings, and a distribution analysis of ground motion residuals are conducted in this study. It is concluded that = 4 is the minimum acceptable value for engineering applications for APEs within 0.002 to 10-4, and for low APEs, such as 10-5 and 10-6, the value of should be no less than 5 in most regions of China.
文摘Based on the calculation of the bedrock effective peak acceleration (EPA) zoning map in the Panxi area, the ratios of EPA with exceedance probabilities of 63%, 5%, 3%, 2% and 1% over 50 years to that of 10% in 50 years are 0.302, 1.30, 1.55, 1.76 and 2.14, respectively. The seismic effect will be conservative and safe if taking this zoning map as the earthquake resistant fortification level and following the relevant rules of the Code for Seismic Design of Buildings (GBJ11 89) to calculate the seismic effect. Furthermore, the main factors that influence the A10/A63 ratios have been found to be the attenuation relationship of seismic ground motion, the division of seismic potential source regions and the seismicity parameters. These achievements are helpful to the spreading and applying of the zoning map.
基金Projects(51161120359,90915005)supported by the National Natural Science Foundation of ChinaProject(NCET-08-0096)supported by the Program for New Century Excellent Talents in University of the Ministry of China
文摘The determination of collapse margin ratio(CMR)of structure is influenced by many uncertain factors.Some factors that can affect the calculation of CMR,e.g.,the elongation of the structural fundamental period prior to collapse,the determination of earthquake intensity measure,the seismic hazard probability,and the difference of the spectral shapes between the median spectrum of the ground motions and the design spectrum,were discussed.Considering the elongation of the structural fundamental period,the intensity measure Sa(T1)should be replaced with *aS in the calculation of CMR for short-period and medium-period structures.The reasonable intensity measure should be determined by the correlation analysis between the earthquake intensity measure and the damage index of the structure.Otherwise,CMR should be adjusted according to the seismic hazard probability and the difference in the spectral shapes.For important long-period structures,CMR should be determined by the special site spectrum.The results indicate that both Sa(T1)and spectrum intensity(SI)could be used as intensity measures in the calculation of CMR for medium-period structures,but SI would be a better choice for long-period structures.Moreover,an adjusted CMR that reflects the actual seismic collapse safety of structures is provided.