期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Significant strengthening of copper-based composites using boron nitride nanotubes 被引量:2
1
作者 Naiqi Chen Quan Li +4 位作者 Youcao Ma Kunming Yang Jian Song Yue Liu Tongxiang Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1764-1778,共15页
Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, w... Nanotubes, such as boron nitride nanotubes (BNNTs) and carbon nanotubes (CNTs), exhibit excellent mechanical properties. In this work, high-quality BNNTs were synthesized by ball milling and annealing. Subsequently, well-dispersed 3vol%BNNTs/Cu and 3vol%CNTs/Cu composites were successfully prepared using ball milling, spark plasma sintering, and followed by hot-rolling. Moreover, the mechanical properties and strengthening mechanisms of BNNTs/Cu and CNTs/Cu composites were compared and discussed in details. At 293 K,both BNNTs/Cu and CNTs/Cu composites exhibited similar ultimate tensile strength (UTS) of~404 MPa, which is approximately 170%higher than pure Cu. However, at 873 K, the UTS and yield strength of BNNTs/Cu are 27%and 29%higher than those of CNTs/Cu, respectively.This difference can be attributed to the stronger inter-walls shear resistance, higher thermomechanical stability of BNNTs, and stronger bonding at the BNNTs/Cu interface as compared to the CNTs/Cu interface. These findings provide valuable insights into the potential of BNNTs as an excellent reinforcement for metal matrix composites, particularly at high temperature. 展开更多
关键词 boron nitride nanotubes copper matrix composites excellent mechanical property strengthening mechanism
下载PDF
A novel coupled quantum well structure and its excellent electro-optical properties
2
作者 李明 徐枝新 《Chinese Optics Letters》 SCIE EI CAS CSCD 2006年第6期351-352,共2页
A novel InGaAs/InAlAs coupled quantum well structure is proposed for large field-induced refractive index change with low absorption loss. In the case of low applied electric field of 15 kV/cm and low absorption loss... A novel InGaAs/InAlAs coupled quantum well structure is proposed for large field-induced refractive index change with low absorption loss. In the case of low applied electric field of 15 kV/cm and low absorption loss (α≤100 cm^-1), a large field-induced refractive index change (for transverse electric (TE) mode, △n= 0.012; for transverse magnetic (TM) mode, △n = 0.0126) is obtained in the structure at the operation wavelength of 1.55 μm. The value is larger by over one order of magnitude than that in a rectangular quantum well. The result is very attractive for semiconductor optical switching devices. 展开更多
关键词 WELL TE A novel coupled quantum well structure and its excellent electro-optical properties mode INGAAS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部