From students' perspectives, the quality characteristics of excellent Chinese college English teachers consist of teaching skills, teacher-student relationship, teachers' knowledge level and teachers' character. It...From students' perspectives, the quality characteristics of excellent Chinese college English teachers consist of teaching skills, teacher-student relationship, teachers' knowledge level and teachers' character. It is a multidimensional construct. Of all the four main constituents, teaching skills is ranked the highest on the explanatory ability on students' perceptions of excellent college English teachers, then teachers' relationship with students, teachers' knowledge level and teachers' character.展开更多
There is no reasonable scientific basis for selecting the excellent teachers of the school’s courses.To solve the practical problem,we firstly give a series of normalization models for defining the key attributes of ...There is no reasonable scientific basis for selecting the excellent teachers of the school’s courses.To solve the practical problem,we firstly give a series of normalization models for defining the key attributes of teachers’professional foundation,course difficulty coefficient,and comprehensive evaluation of teaching.Then,we define a partial weight function to calculate the key attributes,and obtain the partial recommendation values.Next,we construct a highly sparse Teaching Recommendation Factorization Machines(TRFMs)model,which takes the 5-tuples relation including teacher,course,teachers’professional foundation,course difficulty,teaching evaluation as the feature vector,and take partial recommendation value as the recommendation label.Finally,we design a novel Top-N excellent teacher recommendation algorithm based on TRFMs by course classification on the highly sparse dataset.Experimental results show that the proposed TRFMs and recommendation algorithm can accurately realize the recommendation of excellent teachers on a highly sparse historical teaching dataset.The recommendation accuracy is superior to that of the three-dimensional tensor decomposition model algorithm which also solves sparse datasets.The proposed method can be used as a new recommendation method applied to the teaching arrangements in all kinds of schools,which can effectively improve the teaching quality.展开更多
文摘From students' perspectives, the quality characteristics of excellent Chinese college English teachers consist of teaching skills, teacher-student relationship, teachers' knowledge level and teachers' character. It is a multidimensional construct. Of all the four main constituents, teaching skills is ranked the highest on the explanatory ability on students' perceptions of excellent college English teachers, then teachers' relationship with students, teachers' knowledge level and teachers' character.
基金This work was supported by the Planning Subject for the 13th Five-Year Plan of Hunan Provincial Educational Sciences under Grant XJK17BXX006,author D.Y,http://ghkt.hntky.com/.
文摘There is no reasonable scientific basis for selecting the excellent teachers of the school’s courses.To solve the practical problem,we firstly give a series of normalization models for defining the key attributes of teachers’professional foundation,course difficulty coefficient,and comprehensive evaluation of teaching.Then,we define a partial weight function to calculate the key attributes,and obtain the partial recommendation values.Next,we construct a highly sparse Teaching Recommendation Factorization Machines(TRFMs)model,which takes the 5-tuples relation including teacher,course,teachers’professional foundation,course difficulty,teaching evaluation as the feature vector,and take partial recommendation value as the recommendation label.Finally,we design a novel Top-N excellent teacher recommendation algorithm based on TRFMs by course classification on the highly sparse dataset.Experimental results show that the proposed TRFMs and recommendation algorithm can accurately realize the recommendation of excellent teachers on a highly sparse historical teaching dataset.The recommendation accuracy is superior to that of the three-dimensional tensor decomposition model algorithm which also solves sparse datasets.The proposed method can be used as a new recommendation method applied to the teaching arrangements in all kinds of schools,which can effectively improve the teaching quality.