Thermal alkaline hydrolysis is a common pretreatment method for the utilization of excess activated sludge(EAS).Owing to strict environment laws and need for better energy utilization,new methods were developed in thi...Thermal alkaline hydrolysis is a common pretreatment method for the utilization of excess activated sludge(EAS).Owing to strict environment laws and need for better energy utilization,new methods were developed in this study to improve the efficiency of pretreatment method.Direct thermal hydrolysis(TH),pasteurized thermal hydrolysis(PTH),and alkaline pasteurized thermal hydrolysis(PTH+CaO and PTH+NaOH)methods were used to treat EAS.Each method was compared and analyzed in terms of dissolution in ammonium nitrogen(NH_(4)^(+)-N)and soluble COD(SCOD)in EAS.Furthermore,the removal of tetracycline resistance genes(TRGs)and class 1 transposon gene intI1 from EAS was investigated.The NH_(4)^(+)-N and SCOD concentrations in EAS treated by PTH were 1.24 and 2.58 times higher than those of TH.However,the removal efficiency of total TRGs and intI1 between the groups was comparable.The SCOD concentration of the PTH+NaOH group was 4.37 times higher than that of the PTH group,and the removal efficiency of total TRGs was increased by 9.52%compared with that by PTH.The NH_(4)^(+)-N and SCOD concentrations of the PTH+CaO group could reach 85.04%and 92.14%of the PTH+NaOH group,but the removal efficiency of total TRGs by PTH+CaO was 19.78%lower than that by PTH+NaOH.Thus,to reduce the financial cost in actual operation,lime(CaO)can be used instead of a strong alkali(NaOH),and pasteurized steam at 70℃ instead of conventional high-temperature heating to treat EAS.This study provides a reference for the development of alkaline hydrolysis under moderate temperatures along with the removal of TRGs in EAS.展开更多
A study was undertaken to investigate the production of amino acids from excess activated sludge (EAS) by enzymatic hydrolysis. Firstly, the protein was extracted from EAS. Secondly, the protein solution was further h...A study was undertaken to investigate the production of amino acids from excess activated sludge (EAS) by enzymatic hydrolysis. Firstly, the protein was extracted from EAS. Secondly, the protein solution was further hydrolyzed under free enzyme or immobilized enzyme. The reversed phase high performance liquid chromatography (RP-HPLC) and inductively coupled plasma emission spectrometer (ICP) were applied to determine the contents of amino acids and heavy metals, respectively. The effects of enzyme/substrate(E/S), pH, temperature, and reaction time were investigated in detail. The results indicated that, the optimum conditions for protein hydrolysis were temperature 55℃, pH 10, E/S 9 g/L, and reaction time 8 h, and the highest yield of amino acids was more than 10 g/100 g dry sludge (DS) under free enzyme. Moreover, the security and nutrition were taken into consideration. There were seven kinds of essential amino acids and ten non-essential amino acids in the raw amino acid (RAA) solution, and the contents of heavy metals were lower, living up to Hygienical standard for feeds (China). This technology widens the source of amino acids and makes the extraction of amino acids from EAS more economic and effective.展开更多
In order to investigate the influence factors of zero excess activated sludge (EAS) process by ozonation, a 100 L membrane bioreactor coupled with a sludge ozonation unit (MBR-SO) was performed for 80 d without EAS wa...In order to investigate the influence factors of zero excess activated sludge (EAS) process by ozonation, a 100 L membrane bioreactor coupled with a sludge ozonation unit (MBR-SO) was performed for 80 d without EAS wasting. Some mathematical models were developed to elucidate the relationship between process parameters and the operating effects. It is considered that the sludge lysing ratio (ξ), produced COD per unit mass lysed MLSS (η), observed sludge yield coefficient (Yobs) and intrinsic yield coefficient for COD produced by lysed sludge (Y2) significantly affect the flowrate to ozonation unit (q). When q is 0.0067 times of influent flowrate (Q) and ξ is about 0.72 for each batch ozonation, a relatively stable MLSS concentration of 8168 mg/L and zero Yobs are achieved in the MBR-SO system. The calculation of sludge disintegration number indicates that the high ξ can apparently decrease the sludge amount needed for ozonation. At the same ozone dose, the low input ozone concentration and high flowrate can enhance the sludge lysing effects and a low energy consumption of 0.041 Yuan/m3 wastewater is obtained.展开更多
基金supported by the Key R&D Projects of the Sichuan Provincial Department of Science and Technology in 2022 (No.2022YFS0457)Innovation and Entrepreneurship Training Program for College Students (No.202210649050).
文摘Thermal alkaline hydrolysis is a common pretreatment method for the utilization of excess activated sludge(EAS).Owing to strict environment laws and need for better energy utilization,new methods were developed in this study to improve the efficiency of pretreatment method.Direct thermal hydrolysis(TH),pasteurized thermal hydrolysis(PTH),and alkaline pasteurized thermal hydrolysis(PTH+CaO and PTH+NaOH)methods were used to treat EAS.Each method was compared and analyzed in terms of dissolution in ammonium nitrogen(NH_(4)^(+)-N)and soluble COD(SCOD)in EAS.Furthermore,the removal of tetracycline resistance genes(TRGs)and class 1 transposon gene intI1 from EAS was investigated.The NH_(4)^(+)-N and SCOD concentrations in EAS treated by PTH were 1.24 and 2.58 times higher than those of TH.However,the removal efficiency of total TRGs and intI1 between the groups was comparable.The SCOD concentration of the PTH+NaOH group was 4.37 times higher than that of the PTH group,and the removal efficiency of total TRGs was increased by 9.52%compared with that by PTH.The NH_(4)^(+)-N and SCOD concentrations of the PTH+CaO group could reach 85.04%and 92.14%of the PTH+NaOH group,but the removal efficiency of total TRGs by PTH+CaO was 19.78%lower than that by PTH+NaOH.Thus,to reduce the financial cost in actual operation,lime(CaO)can be used instead of a strong alkali(NaOH),and pasteurized steam at 70℃ instead of conventional high-temperature heating to treat EAS.This study provides a reference for the development of alkaline hydrolysis under moderate temperatures along with the removal of TRGs in EAS.
基金Innovation Program of Shanghai Municipal Education Commission,China(No.12zz069)Shanghai Municipal Natural Science Foundation,China(No.11ZR1400400)Fundamental Research Funds for the Central Universities,China(No.12D11303)
文摘A study was undertaken to investigate the production of amino acids from excess activated sludge (EAS) by enzymatic hydrolysis. Firstly, the protein was extracted from EAS. Secondly, the protein solution was further hydrolyzed under free enzyme or immobilized enzyme. The reversed phase high performance liquid chromatography (RP-HPLC) and inductively coupled plasma emission spectrometer (ICP) were applied to determine the contents of amino acids and heavy metals, respectively. The effects of enzyme/substrate(E/S), pH, temperature, and reaction time were investigated in detail. The results indicated that, the optimum conditions for protein hydrolysis were temperature 55℃, pH 10, E/S 9 g/L, and reaction time 8 h, and the highest yield of amino acids was more than 10 g/100 g dry sludge (DS) under free enzyme. Moreover, the security and nutrition were taken into consideration. There were seven kinds of essential amino acids and ten non-essential amino acids in the raw amino acid (RAA) solution, and the contents of heavy metals were lower, living up to Hygienical standard for feeds (China). This technology widens the source of amino acids and makes the extraction of amino acids from EAS more economic and effective.
文摘In order to investigate the influence factors of zero excess activated sludge (EAS) process by ozonation, a 100 L membrane bioreactor coupled with a sludge ozonation unit (MBR-SO) was performed for 80 d without EAS wasting. Some mathematical models were developed to elucidate the relationship between process parameters and the operating effects. It is considered that the sludge lysing ratio (ξ), produced COD per unit mass lysed MLSS (η), observed sludge yield coefficient (Yobs) and intrinsic yield coefficient for COD produced by lysed sludge (Y2) significantly affect the flowrate to ozonation unit (q). When q is 0.0067 times of influent flowrate (Q) and ξ is about 0.72 for each batch ozonation, a relatively stable MLSS concentration of 8168 mg/L and zero Yobs are achieved in the MBR-SO system. The calculation of sludge disintegration number indicates that the high ξ can apparently decrease the sludge amount needed for ozonation. At the same ozone dose, the low input ozone concentration and high flowrate can enhance the sludge lysing effects and a low energy consumption of 0.041 Yuan/m3 wastewater is obtained.