An optimal quota-share and excess-of-loss reinsurance and investment problem is studied for an insurer who is allowed to invest in a risk-free asset and a risky asset.Especially the price process of the risky asset is...An optimal quota-share and excess-of-loss reinsurance and investment problem is studied for an insurer who is allowed to invest in a risk-free asset and a risky asset.Especially the price process of the risky asset is governed by Heston's stochastic volatility(SV)model.With the objective of maximizing the expected index utility of the terminal wealth of the insurance company,by using the classical tools of stochastic optimal control,the explicit expressions for optimal strategies and optimal value functions are derived.An interesting conclusion is found that it is better to buy one reinsurance than two under the assumption of this paper.Moreover,some numerical simulations and sensitivity analysis are provided.展开更多
The rharginal recursive equations on excess-of-loss reinsurance treaty are investignted, under the assumption that the number of claims belongs to the family consisting of Poisson, binomial and negative binomial, and ...The rharginal recursive equations on excess-of-loss reinsurance treaty are investignted, under the assumption that the number of claims belongs to the family consisting of Poisson, binomial and negative binomial, and that the severity distribution has bounded continuous density function. On conditional of the numbers of claims associated with the reinsurer and the cedent, some recursive equations are obtained for the marginal distributions of the total payments of the reinsurer and the cedent.展开更多
In this paper, the surplus process of the insurance company is described by a Brownian motion with drift. In addition, the insurer is allowed to invest in a risk-free asset and n risky assets and purchase excess-of-lo...In this paper, the surplus process of the insurance company is described by a Brownian motion with drift. In addition, the insurer is allowed to invest in a risk-free asset and n risky assets and purchase excess-of-loss reinsurance. Under short-selling prohibition, we consider two optimization problems: the problem of maximizing the expected exponential utility of terminal wealth and the problem of minimizing the probability of ruin. We first show that the excess-of-loss reinsurance strategy is always better than the proportional reinsurance under two objective functions. Then, by solving the corresponding Hamilton-Jacobi-Bellman equations, the closed-form solutions of their optimal value functions and the corresponding optimal strategies are obtained. In particular, when there is no risky-free interest rate, the results indicate that the optimal strategies, under maximizing the expected exponential utility and minimizing the probability of ruin, are equivalent for some special parameter. This validates Ferguson's longstanding conjecture about the relation between the two problems.展开更多
This paper investigates bivariate recursive equations on excess-of-loss reinsurance. For an insurance portfolio, under the assumptions that the individual claim severity distribution has bounded continuous density and...This paper investigates bivariate recursive equations on excess-of-loss reinsurance. For an insurance portfolio, under the assumptions that the individual claim severity distribution has bounded continuous density and the number of claims belongs to R1 (a, b) family, bivariate recursive equations for the joint distribution of the cedent's aggregate claims and the reinsurer's aggregate claims are obtained.展开更多
In this paper,we analyze the relationship between the equilibrium reinsurance strategy and the tail of the distribution of the risk.Since Mean Residual Life(MRL)has a close relationship with the tail of the distributi...In this paper,we analyze the relationship between the equilibrium reinsurance strategy and the tail of the distribution of the risk.Since Mean Residual Life(MRL)has a close relationship with the tail of the distribution,we consider two classes of risk distributions,Decreasing Mean Residual Life(DMRL)and Increasing Mean Residual Life(IMRL)distributions,which can be used to classify light-tailed and heavy-tailed distributions,respectively.We assume that the underlying risk process is modelled by the classical CramérLundberg model process.Under the mean-variance criterion,by solving the extended Hamilton-Jacobi-Bellman equation,we derive the equilibrium reinsurance strategy for the insurer and the reinsurer under DMRL and IMRL,respectively.Furthermore,we analyze how to choose the reinsurance premium to make the insurer and the reinsurer agree with the same reinsurance strategy.We find that under the case of DMRL,if the distribution and the risk aversions satisfy certain conditions,the insurer and the reinsurer can adopt a reinsurance premium to agree on a reinsurance strategy,and under the case of IMRL,the insurer and the reinsurer can only agree with each other that the insurer do not purchase the reinsurance.展开更多
This paper considers a proportional reinsurance-investment problem and an excess-of-loss reinsurance-investment problem for an insurer,where price processes of the risky assets and wealth process of the insurer are bo...This paper considers a proportional reinsurance-investment problem and an excess-of-loss reinsurance-investment problem for an insurer,where price processes of the risky assets and wealth process of the insurer are both described by Markovian regime switching.The target of the insurer is assumed to maximize the expected exponential utility from her terminal wealth with a state-dependent utility function.By employing the dynamic programming approach,the optimal value functions and the optimal reinsurance-investment strategies are derived.In addition,the impact of some parameters on the optimal strategies and the optimal value functions is analyzed,and lots of interesting results are discovered,such as the conclusion that excess-of-loss reinsurance is better than proportional reinsurance is not held in the regime-switching jump-diffusion model.展开更多
In actuarial science, Panjer recursion (1981) is used in insurance to compute the loss distribution of the compound risk models. When the severity distribution is continuous with density function, numerical calculat...In actuarial science, Panjer recursion (1981) is used in insurance to compute the loss distribution of the compound risk models. When the severity distribution is continuous with density function, numerical calculation for the compound distribution by applying Panjer recursion will involve an approxi- mation of the integration. In order to simplify the numerical algorithms, we apply Bernstein approximation for the continuous severity distribution function and obtain approximated recursive equations, which are used for computing the approximated values of the compound distribution. The theoretical error bound for the approximation is also obtained. Numerical results show that our algorithm provides reliable results.展开更多
基金National Natural Science Foundation of China(No.62073071)Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2021045)。
文摘An optimal quota-share and excess-of-loss reinsurance and investment problem is studied for an insurer who is allowed to invest in a risk-free asset and a risky asset.Especially the price process of the risky asset is governed by Heston's stochastic volatility(SV)model.With the objective of maximizing the expected index utility of the terminal wealth of the insurance company,by using the classical tools of stochastic optimal control,the explicit expressions for optimal strategies and optimal value functions are derived.An interesting conclusion is found that it is better to buy one reinsurance than two under the assumption of this paper.Moreover,some numerical simulations and sensitivity analysis are provided.
基金Project supported by the National Natural Science Foundation of China (Nos. 10471008, 19831020)
文摘The rharginal recursive equations on excess-of-loss reinsurance treaty are investignted, under the assumption that the number of claims belongs to the family consisting of Poisson, binomial and negative binomial, and that the severity distribution has bounded continuous density function. On conditional of the numbers of claims associated with the reinsurer and the cedent, some recursive equations are obtained for the marginal distributions of the total payments of the reinsurer and the cedent.
基金supported by Keygrant Project of Ministry of Education, China (Grant No. 309009)National Natural Science Foundation of China (Grant No. 10871102)
文摘In this paper, the surplus process of the insurance company is described by a Brownian motion with drift. In addition, the insurer is allowed to invest in a risk-free asset and n risky assets and purchase excess-of-loss reinsurance. Under short-selling prohibition, we consider two optimization problems: the problem of maximizing the expected exponential utility of terminal wealth and the problem of minimizing the probability of ruin. We first show that the excess-of-loss reinsurance strategy is always better than the proportional reinsurance under two objective functions. Then, by solving the corresponding Hamilton-Jacobi-Bellman equations, the closed-form solutions of their optimal value functions and the corresponding optimal strategies are obtained. In particular, when there is no risky-free interest rate, the results indicate that the optimal strategies, under maximizing the expected exponential utility and minimizing the probability of ruin, are equivalent for some special parameter. This validates Ferguson's longstanding conjecture about the relation between the two problems.
基金the National Natural Science Foundation of China(19831020,10471008)
文摘This paper investigates bivariate recursive equations on excess-of-loss reinsurance. For an insurance portfolio, under the assumptions that the individual claim severity distribution has bounded continuous density and the number of claims belongs to R1 (a, b) family, bivariate recursive equations for the joint distribution of the cedent's aggregate claims and the reinsurer's aggregate claims are obtained.
基金supported by the National Key R&D Program of China(2022YFA1007900)the National Natural Science Foundation of China(Nos.12271171,12171158,12071147,12001200)+3 种基金the Shanghai Philosophy Social Science Planning Office Project(Grant No.2022ZJB005)the Fundamental Research Funds for the Central Universities(2022QKT001)the State Key Program of National Natural Science Foundation of China(71931004)the Humanity and Social Science Foundation of Ningbo University(XPYB19002)。
文摘In this paper,we analyze the relationship between the equilibrium reinsurance strategy and the tail of the distribution of the risk.Since Mean Residual Life(MRL)has a close relationship with the tail of the distribution,we consider two classes of risk distributions,Decreasing Mean Residual Life(DMRL)and Increasing Mean Residual Life(IMRL)distributions,which can be used to classify light-tailed and heavy-tailed distributions,respectively.We assume that the underlying risk process is modelled by the classical CramérLundberg model process.Under the mean-variance criterion,by solving the extended Hamilton-Jacobi-Bellman equation,we derive the equilibrium reinsurance strategy for the insurer and the reinsurer under DMRL and IMRL,respectively.Furthermore,we analyze how to choose the reinsurance premium to make the insurer and the reinsurer agree with the same reinsurance strategy.We find that under the case of DMRL,if the distribution and the risk aversions satisfy certain conditions,the insurer and the reinsurer can adopt a reinsurance premium to agree on a reinsurance strategy,and under the case of IMRL,the insurer and the reinsurer can only agree with each other that the insurer do not purchase the reinsurance.
基金supported by the National Natural Science Foundation of China under Grant Nos.71501050 and 71231008the National Science Foundation of Guangdong Province of China under Grant No.2014A030310195+1 种基金Guangdong Natural Science for Research Team under Grant No.2014A030312003Chinese Scholarship Council under Grant No.201508440324
文摘This paper considers a proportional reinsurance-investment problem and an excess-of-loss reinsurance-investment problem for an insurer,where price processes of the risky assets and wealth process of the insurer are both described by Markovian regime switching.The target of the insurer is assumed to maximize the expected exponential utility from her terminal wealth with a state-dependent utility function.By employing the dynamic programming approach,the optimal value functions and the optimal reinsurance-investment strategies are derived.In addition,the impact of some parameters on the optimal strategies and the optimal value functions is analyzed,and lots of interesting results are discovered,such as the conclusion that excess-of-loss reinsurance is better than proportional reinsurance is not held in the regime-switching jump-diffusion model.
文摘In actuarial science, Panjer recursion (1981) is used in insurance to compute the loss distribution of the compound risk models. When the severity distribution is continuous with density function, numerical calculation for the compound distribution by applying Panjer recursion will involve an approxi- mation of the integration. In order to simplify the numerical algorithms, we apply Bernstein approximation for the continuous severity distribution function and obtain approximated recursive equations, which are used for computing the approximated values of the compound distribution. The theoretical error bound for the approximation is also obtained. Numerical results show that our algorithm provides reliable results.