Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,t...Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.展开更多
The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki...The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki, Mazélé in the NE of Ngaoundéré, Tello and Ganguiré in the SE of Ngaoundéré and Likok, locality located in the west of Ngaoundé). The peridotite enclaves of the above localities show restricted mineralogical variation. Most are four-phase spinel-lherzolites, indicating that this is the main lithology that forms the lithospheric mantle below the shallow zone. No traces of garnet or primary plagioclase were detected, which strongly limits the depth range from which the rock fragments were sampled. The textures and the wide equilibrium temperatures (884˚C - 1115˚C) indicate also entrainment of lherzolite xenoliths from shallow depths within the lithosphere and the presence of mantle diapirism. The exchange reactions and equilibrium state established in this work make it possible to characterize the chemical composition of the upper mantle of each region and test the equilibrium state of the phases between them. Variations of major oxides and incompatible elemental concentrations in clinopyroxene indicate a primary control by partial melting. The absence of typical “metasomatic” minerals, low equilibration temperatures and enriched LREE patterns indicate that the upper mantle below septentrional crust of Cameroun underwent an event of cryptic metasomatic enrichment prior to partial melting. The distinctive chemical features, LREE enrichment, strong U, Ce and Pr, depletion relative to Ba, Nb, La, Pb, and T, fractionation of Zr and Hf and therefore ligh high Zr/Hf ratio, low La/Yb, Nb/La and Ti/Eu are all results of interaction of refractory peridotite residues with carbonatite melts.展开更多
The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen pro...The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications.展开更多
In this work,the structure,viscosity and ion-exchange process of Na_(2)O-MgO-Al_(2)O_(3)-SiO_(2) glasses with different Al_(2)O_(3)/SiO_(2) molar ratios were investigated.The results showed that,with increasing Al_(2)...In this work,the structure,viscosity and ion-exchange process of Na_(2)O-MgO-Al_(2)O_(3)-SiO_(2) glasses with different Al_(2)O_(3)/SiO_(2) molar ratios were investigated.The results showed that,with increasing Al_(2)O_(3)/SiO_(2) ratio,the simple structural units Q_(1) and Q_(2) transformed into highly aggregated structural units Q_(3) and Q_(4),indicating the increase of polymerization degree of glass network.Meanwhile,the coefficient of thermal expansion decreased from 9.23×10^(-6)℃^(-1) to 8.88×10^(-6)℃^(-1).The characteristic temperatures such as melting,forming,softening and glass transition temperatures increased with the increase of Al_(2)O_(3)/SiO_(2) ratio,while the glasses working temperature range became narrow.The increasing Al_(2)O_(3)/SiO_(2) ratio and prolonging ion-exchange time enhanced the surface compressive stress(CS)and depth of stress layer(DOL).However,the increase of ion exchange temperature increased the DOL and decreased the CS affected by stress relaxation.There was a good linear relationship between stress relaxation and surface compressive stress.Chemical strengthening significantly improved the hardness of glasses,which reached the maximum value of(622.1±10)MPa for sample with Al_(2)O_(3)/SiO_(2) ratio of 0.27 after heat treated at 410℃for 2 h.展开更多
An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of A...An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of AEMs,semi-interpenetrating polymer networks(SIPNs)have been suggested for their structural superiorities,i.e.,the tunable local density of ion exchange groups for IEC and the restrained leaching of hygroscopic groups by insolubility for WU.Unfortunately,the conventional SIPN AEMs still struggle to balances IEC,WU,and mechanical strength simultaneously,due to the lack of the compact crosslinking region.In this work,we proposed a novel SIPN structure of polyvinylidene difluoride/polyvinylimidazole/1,6-dibromohexane(PVDF/PVIm/DBH).On the one hand,DBH with two cationic groups of imidazole groups are introduced to enhance the ion conductivity,which is different from the conventional monofunctional modifier with only one cationic group.On the other hand,DBH has the ability to bridge with PVIm,where the mechanical strength of the resulting AEM is increased by the increase of crosslinking degree.Results show that a low WU of 38.1%to 62.6%,high IEC of 2.12—2.22 mmol·g^(-1),and excellent tensile strength of 3.54—12.35 MPa for PVDF/PVIm/DBH membrane are achieved.This work opens a new avenue for achieving the high-quality AEMs.展开更多
Ultrafast charge exchange recombination spectroscopy(UF-CXRS)has been developed on the EAST tokamak(Yingying Li et al 2019 Fusion Eng.Des.146522)to measure fast evolutions of ion temperature and toroidal velocity.Here...Ultrafast charge exchange recombination spectroscopy(UF-CXRS)has been developed on the EAST tokamak(Yingying Li et al 2019 Fusion Eng.Des.146522)to measure fast evolutions of ion temperature and toroidal velocity.Here,we report the preliminary diagnostic measurements after relative sensitivity calibration.The measurement results show a much higher temporal resolution compared with conventional CXRS,benefiting from the usage of a prismcoupled,high-dispersion volume-phase holographic transmission grating and a high quantum efficiency,high-gain detector array.Utilizing the UF-CXRS diagnostic,the fast evolutions of the ion temperature and rotation velocity during a set of high-frequency small-amplitude edgelocalized modes(ELMs)are obtained on the EAST tokamak,which are then compared with the case of large-amplitude ELMs.展开更多
Building well-developed ion-conductive highways is highly desirable for anion exchange membranes(AEMs).Grafting side chain is a highly effective approach for constructing a well-defined phaseseparated morphological st...Building well-developed ion-conductive highways is highly desirable for anion exchange membranes(AEMs).Grafting side chain is a highly effective approach for constructing a well-defined phaseseparated morphological structure and forming unblocked ion pathways in AEMs for fast ion transport.Fluorination of side chains can further enhance phase separation due to the superhydrophobic nature of fluorine groups.However,their electronic effect on the alkaline stability of side chains and membranes is rarely reported.Here,fluorine-containing and fluorine-free side chains are introduced into the polyaromatic backbone in proper configuration to investigate the impact of the fluorine terminal group on the stability of the side chains and membrane properties.The poly(binaphthyl-co-p-terphenyl piperidinium)AEM(QBNp TP)has the highest molecular weight and most dimensional stability due to its favorable backbone arrangement among ortho-and meta-terphenyl based AEMs.Importantly,by introducing both a fluorinated piperidinium side chain and a hexane chain into the p-terphenyl-based backbone,the prepared AEM(QBNp TP-QFC)presents an enhanced conductivity(150.6 m S cm^(-1))and a constrained swelling at 80℃.The electronic effect of fluorinated side chains is contemplated by experiments and simulations.The results demonstrate that the presence of strong electro-withdrawing fluorine groups weakens the electronic cloud of adjacent C atoms,increasing OH^(-)attack on the C atom and improving the stability of piperidinium cations.Hence QBNp TP-QFC possesses a robust alkaline stability at 80℃(95.3%conductivity retention after testing in 2 M Na OH for 2160 h).An excellent peak power density of 1.44 W cm^(-2)and a remarkable durability at 80℃(4.5%voltage loss after 100 h)can be observed.展开更多
A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Mont...A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications.展开更多
This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstrea...This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstream(Case 3),downstream(Case 4),and the entire cathode flow channel(Case 5)to study the effects of baffle position on mass transport,power density,net power,etc.Moreover,the effects of back pressure and humidity on the voltage were investigated.Results showed that compared to smooth channels,the oxygen and water transport facilitation at the diffusion layer-channel interface were added 11.53%-20.60%and 7.81%-9.80%at 1.68 A·cm^(-2)by adding baffles.The closer the baffles were to upstream,the higher the total oxygen flux,but the lower the flux uniformity the worse the water removal.The oxygen flux of upstream baffles was 8.14%higher than that of downstream baffles,but oxygen flux uniformity decreased by 18.96%at 1.68 A·cm^(-2).The order of water removal and voltage improvement was Case 4>Case 5>Case 3>Case 2>Case 1.Net power of Case 4 was 9.87%higher than that of the smooth channel.To the Case 4,when the cell worked under low back pressure or high humidity,the voltage increments were higher.The potential increment for the back pressure of 0 atm was 0.9%higher than that of 2 atm(1 atm=101.325 kPa).The potential increment for the humidity of 100%was 7.89%higher than that of 50%.展开更多
Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels.Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to...Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels.Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to obtain high-purity hydrogen.Nevertheless,electrocatalysts used in the process are fabricated using conventional wet chemical synthesis methods,such as sol-gel,hydrothermal,or surfactantassisted approaches,which often necessitate intricate pretreatment procedures and are vulnerable to post-treatment contamination.Therefore,this study introduces a streamlined and environmentally conscious one-step potential-cycling approach to generate a highly efficient trimetallic nickel-iron-copper electrocatalyst in situ on nickel foam.The synthesized material exhibited remarkable performance,requiring a mere 476 mV to drive electrochemical water splitting at 100 mA cm^(-2)current density in alkaline solution.Furthermore,this material was integrated into an anion exchange membrane watersplitting device and achieved an exceptionally high current density of 1 A cm^(-2)at a low cell voltage of2.13 V,outperforming the noble-metal benchmark(2.51 V).Additionally,ex situ characterizations were employed to detect transformations in the active sites during the catalytic process,revealing the structural transformations and providing inspiration for further design of electrocatalysts.展开更多
Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Her...Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads.展开更多
On September 5,the ChinaLaos Economic and Trade Cooperation Exchange Conference,themed"Highlevel Opening-up and Building a China-Laos Community with a Shared Future,"took place in Vientiane,capital of Laos.T...On September 5,the ChinaLaos Economic and Trade Cooperation Exchange Conference,themed"Highlevel Opening-up and Building a China-Laos Community with a Shared Future,"took place in Vientiane,capital of Laos.The purpose of the conference was to review the achievements of bilateral economic and trade cooperation and work together to develop the roadmap to high-quality development of China-Laos economic and trade cooperation by focusing on shared goals,pooling strength,and adhering to results-oriented collaboration.展开更多
How to optimize and regulate the distribution of phosphoric acid in matrix,and pursuing the improved electrochemical performance and service lifetime of high temperature proton exchange membrane(HT-PEMs)fuel cell are ...How to optimize and regulate the distribution of phosphoric acid in matrix,and pursuing the improved electrochemical performance and service lifetime of high temperature proton exchange membrane(HT-PEMs)fuel cell are significant challenges.Herein,bifunctional poly(p-terphenyl-co-isatin piperidinium)copolymer with tethered phosphonic acid(t-PA)and intrinsic tertiary amine base groups are firstly prepared and investigated as HT-PEMs.The distinctive architecture of the copolymer provides a well-designed platform for rapid proton transport.Protons not only transports through the hydrogen bond network formed by the adsorbed free phosphoric acid(f-PA)anchored by the tertiary amine base groups,but also rely upon the proton channel constructed by the ionic cluster formed by the t-PA aggregation.Thorough the design of the structure,the bifunctional copolymers with lower PA uptake level(<100%)display prominent proton conductivities and peak power densities(99 mS cm^(-1),812 mW cm^(-2)at 160℃),along with lower PA leaching and higher voltage stability,which is a top leading result in disclosed literature.The results demonstrate that the design of intermolecular acid-base-pairs can improve the proton conductivity without sacrificing the intrinsic chemical stability or mechanical property of the thin membrane,realizing win-win demands between the mechanical robustness and electrochemical properties of HT-PEMs.展开更多
Thanks to the scholarship granted to me by the China Scholarship Council under the Project on Innovative Talent in African Studies,I had the incredible opportunity to spend six months living in Ibadan,Nigeria’s third...Thanks to the scholarship granted to me by the China Scholarship Council under the Project on Innovative Talent in African Studies,I had the incredible opportunity to spend six months living in Ibadan,Nigeria’s third-largest city,and study at the University of Ibadan.Intrigued by teaching and eager to gain insights into local schools,I applied to be a Chinese teacher at Abiodun Metropolitan Schools.展开更多
In order to explore and foster innovation in international exchange and cooperation,this study focuses on the background of the construction of the Hainan Free Trade Port.It delves into the current development status,...In order to explore and foster innovation in international exchange and cooperation,this study focuses on the background of the construction of the Hainan Free Trade Port.It delves into the current development status,characteristic demands,and potential challenges of its international exchange and cooperation mechanisms.Through a comprehensive analysis of relevant cases,survey questionnaires,and literature,this study aims to provide feasible innovative models and recommendations to promote the sustained development of the Hainan Free Trade Port in the field of international exchange and cooperation,injecting new vitality into China’s economic globalization.This exploration contributes to a deeper understanding of the development of free trade ports and provides insights and references for other countries and regions.展开更多
In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(C...In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(CEEMDAN),kernel principal component analysis(KPCA)and dual attention mechanism gated recurrent unit neural network(DA-GRU)was proposed.CEEMDAN and KPCA were used to extract the input feature data sequence,reduce the influence of random factors,and capture essential feature components to reduce the model complexity.The DA-GRU network helps to learn the feature mapping relationship of data in long time series and predict the changing trend of performance degradation data more accurately.The actual aging experimental data verify the performance of the CKDG method.The results show that under the steady-state condition of 20%training data prediction,the CKDA method can reduce the root mean square error(RMSE)by 52.7%and 34.6%,respectively,compared with the traditional LSTM and GRU neural networks.Compared with the simple DA-GRU network,RMSE is reduced by 15%,and the degree of over-fitting is reduced,which has higher accuracy.It also shows excellent prediction performance under the dynamic condition data set and has good universality.展开更多
基金supported by the National Key Research and Development Program(2022YFB4202200)the Fundamental Research Funds for the Central Universities and sponsored by Shanghai Pujiang Program(22PJ1413100)。
文摘Green hydrogen produced by water electrolysis combined with renewable energy is a promising alternative to fossil fuels due to its high energy density with zero-carbon emissions.Among water electrolysis technologies,the anion exchange membrane(AEM) water electrolysis has gained intensive attention and is considered as the next-generation emerging technology due to its potential advantages,such as the use of low-cost non-noble metal catalysts,the relatively mature stack assembly process,etc.However,the AEM water electrolyzer is still in the early development stage of the kW-level stack,which is mainly attributed to severe performance decay caused by the core component,i.e.,AEM.Here,the review comprehensively presents the recent progress of advanced AEM from the view of the performance of water electrolysis cells.Herein,fundamental principles and critical components of AEM water electrolyzers are introduced,and work conditions of AEM water electrolyzers and AEM performance improvement strategies are discussed.The challenges and perspectives are also analyzed.
文摘The alkaline volcanism of the Cameroon Volcanic Line in its northern domain has raised many fresh enclaves of peridotites. The samples selected come from five (05) different localities (Liri, in the plateau of Kapsiki, Mazélé in the NE of Ngaoundéré, Tello and Ganguiré in the SE of Ngaoundéré and Likok, locality located in the west of Ngaoundé). The peridotite enclaves of the above localities show restricted mineralogical variation. Most are four-phase spinel-lherzolites, indicating that this is the main lithology that forms the lithospheric mantle below the shallow zone. No traces of garnet or primary plagioclase were detected, which strongly limits the depth range from which the rock fragments were sampled. The textures and the wide equilibrium temperatures (884˚C - 1115˚C) indicate also entrainment of lherzolite xenoliths from shallow depths within the lithosphere and the presence of mantle diapirism. The exchange reactions and equilibrium state established in this work make it possible to characterize the chemical composition of the upper mantle of each region and test the equilibrium state of the phases between them. Variations of major oxides and incompatible elemental concentrations in clinopyroxene indicate a primary control by partial melting. The absence of typical “metasomatic” minerals, low equilibration temperatures and enriched LREE patterns indicate that the upper mantle below septentrional crust of Cameroun underwent an event of cryptic metasomatic enrichment prior to partial melting. The distinctive chemical features, LREE enrichment, strong U, Ce and Pr, depletion relative to Ba, Nb, La, Pb, and T, fractionation of Zr and Hf and therefore ligh high Zr/Hf ratio, low La/Yb, Nb/La and Ti/Eu are all results of interaction of refractory peridotite residues with carbonatite melts.
基金supported by the KRISS(Korea Research Institute of Standards and Science)MPI Lab.program。
文摘The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications.
基金Funded by National Natural Science Foundation of China(Nos.52172019 and 52072148)Shandong Provincial Youth Innovation Team Development Plan of Colleges and Universities(No.2022K1100)。
文摘In this work,the structure,viscosity and ion-exchange process of Na_(2)O-MgO-Al_(2)O_(3)-SiO_(2) glasses with different Al_(2)O_(3)/SiO_(2) molar ratios were investigated.The results showed that,with increasing Al_(2)O_(3)/SiO_(2) ratio,the simple structural units Q_(1) and Q_(2) transformed into highly aggregated structural units Q_(3) and Q_(4),indicating the increase of polymerization degree of glass network.Meanwhile,the coefficient of thermal expansion decreased from 9.23×10^(-6)℃^(-1) to 8.88×10^(-6)℃^(-1).The characteristic temperatures such as melting,forming,softening and glass transition temperatures increased with the increase of Al_(2)O_(3)/SiO_(2) ratio,while the glasses working temperature range became narrow.The increasing Al_(2)O_(3)/SiO_(2) ratio and prolonging ion-exchange time enhanced the surface compressive stress(CS)and depth of stress layer(DOL).However,the increase of ion exchange temperature increased the DOL and decreased the CS affected by stress relaxation.There was a good linear relationship between stress relaxation and surface compressive stress.Chemical strengthening significantly improved the hardness of glasses,which reached the maximum value of(622.1±10)MPa for sample with Al_(2)O_(3)/SiO_(2) ratio of 0.27 after heat treated at 410℃for 2 h.
基金funded by National Natural Science Foundation of China(22278023,22208010)Beijing Municipal Science and Technology Planning Project(Z221100002722002)+3 种基金Bingtuan Science and Technology Program(2022DB025)Beijing Natural Science Foundation(2222015)Sinopec Group(323034)the long-term from the Ministry of Finance and the Ministry of Education of PRC。
文摘An anion exchange membrane(AEM)is generally expected to possess high ion exchange capacity(IEC),low water uptake(WU),and high mechanical strength when applied to electrodialysis desalination.Among different types of AEMs,semi-interpenetrating polymer networks(SIPNs)have been suggested for their structural superiorities,i.e.,the tunable local density of ion exchange groups for IEC and the restrained leaching of hygroscopic groups by insolubility for WU.Unfortunately,the conventional SIPN AEMs still struggle to balances IEC,WU,and mechanical strength simultaneously,due to the lack of the compact crosslinking region.In this work,we proposed a novel SIPN structure of polyvinylidene difluoride/polyvinylimidazole/1,6-dibromohexane(PVDF/PVIm/DBH).On the one hand,DBH with two cationic groups of imidazole groups are introduced to enhance the ion conductivity,which is different from the conventional monofunctional modifier with only one cationic group.On the other hand,DBH has the ability to bridge with PVIm,where the mechanical strength of the resulting AEM is increased by the increase of crosslinking degree.Results show that a low WU of 38.1%to 62.6%,high IEC of 2.12—2.22 mmol·g^(-1),and excellent tensile strength of 3.54—12.35 MPa for PVDF/PVIm/DBH membrane are achieved.This work opens a new avenue for achieving the high-quality AEMs.
基金supported by the National Magnetic Confinement Fusion Science Program of China (No. 2019YFE 03030004)National Natural Science Foundation of China (Nos. 11535013 and 11975232)
文摘Ultrafast charge exchange recombination spectroscopy(UF-CXRS)has been developed on the EAST tokamak(Yingying Li et al 2019 Fusion Eng.Des.146522)to measure fast evolutions of ion temperature and toroidal velocity.Here,we report the preliminary diagnostic measurements after relative sensitivity calibration.The measurement results show a much higher temporal resolution compared with conventional CXRS,benefiting from the usage of a prismcoupled,high-dispersion volume-phase holographic transmission grating and a high quantum efficiency,high-gain detector array.Utilizing the UF-CXRS diagnostic,the fast evolutions of the ion temperature and rotation velocity during a set of high-frequency small-amplitude edgelocalized modes(ELMs)are obtained on the EAST tokamak,which are then compared with the case of large-amplitude ELMs.
基金the financial support from the National Natural Science Foundation of China(22078272&22278340)。
文摘Building well-developed ion-conductive highways is highly desirable for anion exchange membranes(AEMs).Grafting side chain is a highly effective approach for constructing a well-defined phaseseparated morphological structure and forming unblocked ion pathways in AEMs for fast ion transport.Fluorination of side chains can further enhance phase separation due to the superhydrophobic nature of fluorine groups.However,their electronic effect on the alkaline stability of side chains and membranes is rarely reported.Here,fluorine-containing and fluorine-free side chains are introduced into the polyaromatic backbone in proper configuration to investigate the impact of the fluorine terminal group on the stability of the side chains and membrane properties.The poly(binaphthyl-co-p-terphenyl piperidinium)AEM(QBNp TP)has the highest molecular weight and most dimensional stability due to its favorable backbone arrangement among ortho-and meta-terphenyl based AEMs.Importantly,by introducing both a fluorinated piperidinium side chain and a hexane chain into the p-terphenyl-based backbone,the prepared AEM(QBNp TP-QFC)presents an enhanced conductivity(150.6 m S cm^(-1))and a constrained swelling at 80℃.The electronic effect of fluorinated side chains is contemplated by experiments and simulations.The results demonstrate that the presence of strong electro-withdrawing fluorine groups weakens the electronic cloud of adjacent C atoms,increasing OH^(-)attack on the C atom and improving the stability of piperidinium cations.Hence QBNp TP-QFC possesses a robust alkaline stability at 80℃(95.3%conductivity retention after testing in 2 M Na OH for 2160 h).An excellent peak power density of 1.44 W cm^(-2)and a remarkable durability at 80℃(4.5%voltage loss after 100 h)can be observed.
基金Project supported by the National Key Research and Development Program of China (Grant No.2019YFA0210004)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB30000000)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.WK3510000013)the National Supercomputing Center in Tianjin。
文摘A clear microscopic understanding of exchange bias is crucial for its application in magnetic recording, and further progress in this area is desired. Based on the results of our first-principles calculations and Monte Carlo simulations,we present a theoretical proposal for a stacking-dependent exchange bias in two-dimensional compensated van der Waals ferromagnetic/antiferromagnetic bilayer heterostructures. The exchange bias effect emerges in stacking registries that accommodate inhomogeneous interlayer magnetic interactions between the ferromagnetic layer and different spin sublattices of the antiferromagnetic layer. Moreover, the on/off switching and polarity reversal of the exchange bias can be achieved by interlayer sliding, and the strength can be modulated using an external electric field. Our findings push the limits of exchange bias systems to extreme bilayer thickness in two-dimensional van der Waals heterostructures, potentially stimulating new experimental investigations and applications.
基金financially supported by the Science&Technology Project of Beijing Education Committee(KM202210005013)National Natural Science Foundation of China(52306180)。
文摘This study used a three-dimensional numerical model of a proton exchange membrane fuel cell with five types of channels:a smooth channel(Case 1);eight rectangular baffles were arranged in the upstream(Case 2),midstream(Case 3),downstream(Case 4),and the entire cathode flow channel(Case 5)to study the effects of baffle position on mass transport,power density,net power,etc.Moreover,the effects of back pressure and humidity on the voltage were investigated.Results showed that compared to smooth channels,the oxygen and water transport facilitation at the diffusion layer-channel interface were added 11.53%-20.60%and 7.81%-9.80%at 1.68 A·cm^(-2)by adding baffles.The closer the baffles were to upstream,the higher the total oxygen flux,but the lower the flux uniformity the worse the water removal.The oxygen flux of upstream baffles was 8.14%higher than that of downstream baffles,but oxygen flux uniformity decreased by 18.96%at 1.68 A·cm^(-2).The order of water removal and voltage improvement was Case 4>Case 5>Case 3>Case 2>Case 1.Net power of Case 4 was 9.87%higher than that of the smooth channel.To the Case 4,when the cell worked under low back pressure or high humidity,the voltage increments were higher.The potential increment for the back pressure of 0 atm was 0.9%higher than that of 2 atm(1 atm=101.325 kPa).The potential increment for the humidity of 100%was 7.89%higher than that of 50%.
基金financially supported by the National Natural Science Foundation of China(21975100).
文摘Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels.Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to obtain high-purity hydrogen.Nevertheless,electrocatalysts used in the process are fabricated using conventional wet chemical synthesis methods,such as sol-gel,hydrothermal,or surfactantassisted approaches,which often necessitate intricate pretreatment procedures and are vulnerable to post-treatment contamination.Therefore,this study introduces a streamlined and environmentally conscious one-step potential-cycling approach to generate a highly efficient trimetallic nickel-iron-copper electrocatalyst in situ on nickel foam.The synthesized material exhibited remarkable performance,requiring a mere 476 mV to drive electrochemical water splitting at 100 mA cm^(-2)current density in alkaline solution.Furthermore,this material was integrated into an anion exchange membrane watersplitting device and achieved an exceptionally high current density of 1 A cm^(-2)at a low cell voltage of2.13 V,outperforming the noble-metal benchmark(2.51 V).Additionally,ex situ characterizations were employed to detect transformations in the active sites during the catalytic process,revealing the structural transformations and providing inspiration for further design of electrocatalysts.
文摘Meeting the climate change mitigation targets will require a substantial shift from fossil to clean fuels in the heating sector.Heat pumps with deep borehole exchangers are a promising solution to reduce emissions.Here the thermal behavior of deep borehole exchangers(DBHEs)ranging from 1 to 2 km was analyzed for various heat flow profiles.A strong correlation between thermal energy extraction and power output from DBHEs was found,also influenced by the heating profile employed.Longer operating time over the year typically resulted in higher energy production,while shorter one yielded higher average thermal power output,highlighting the importance of the choice of heating strategy and system design for optimal performance of DBHEs.Short breaks in operation for regenerating the borehole,for example,with waste heat,proved to be favorable for the performance yielding an overall heat output close to the same as with continuous extraction of heat.The results demonstrate the usefulness of deep boreholes for dense urban areas with less available space.As the heat production from a single DBHE in Finnish conditions ranges from half up to even a few GWh a year,the technology is best suitable for larger heat loads.
文摘On September 5,the ChinaLaos Economic and Trade Cooperation Exchange Conference,themed"Highlevel Opening-up and Building a China-Laos Community with a Shared Future,"took place in Vientiane,capital of Laos.The purpose of the conference was to review the achievements of bilateral economic and trade cooperation and work together to develop the roadmap to high-quality development of China-Laos economic and trade cooperation by focusing on shared goals,pooling strength,and adhering to results-oriented collaboration.
基金supported by the National Key Research and Development Program(2018YFA0702002)the National Key Research and Development Program(Japan-China Joint Research Program)(2017YFE0197900)
文摘How to optimize and regulate the distribution of phosphoric acid in matrix,and pursuing the improved electrochemical performance and service lifetime of high temperature proton exchange membrane(HT-PEMs)fuel cell are significant challenges.Herein,bifunctional poly(p-terphenyl-co-isatin piperidinium)copolymer with tethered phosphonic acid(t-PA)and intrinsic tertiary amine base groups are firstly prepared and investigated as HT-PEMs.The distinctive architecture of the copolymer provides a well-designed platform for rapid proton transport.Protons not only transports through the hydrogen bond network formed by the adsorbed free phosphoric acid(f-PA)anchored by the tertiary amine base groups,but also rely upon the proton channel constructed by the ionic cluster formed by the t-PA aggregation.Thorough the design of the structure,the bifunctional copolymers with lower PA uptake level(<100%)display prominent proton conductivities and peak power densities(99 mS cm^(-1),812 mW cm^(-2)at 160℃),along with lower PA leaching and higher voltage stability,which is a top leading result in disclosed literature.The results demonstrate that the design of intermolecular acid-base-pairs can improve the proton conductivity without sacrificing the intrinsic chemical stability or mechanical property of the thin membrane,realizing win-win demands between the mechanical robustness and electrochemical properties of HT-PEMs.
文摘Thanks to the scholarship granted to me by the China Scholarship Council under the Project on Innovative Talent in African Studies,I had the incredible opportunity to spend six months living in Ibadan,Nigeria’s third-largest city,and study at the University of Ibadan.Intrigued by teaching and eager to gain insights into local schools,I applied to be a Chinese teacher at Abiodun Metropolitan Schools.
文摘In order to explore and foster innovation in international exchange and cooperation,this study focuses on the background of the construction of the Hainan Free Trade Port.It delves into the current development status,characteristic demands,and potential challenges of its international exchange and cooperation mechanisms.Through a comprehensive analysis of relevant cases,survey questionnaires,and literature,this study aims to provide feasible innovative models and recommendations to promote the sustained development of the Hainan Free Trade Port in the field of international exchange and cooperation,injecting new vitality into China’s economic globalization.This exploration contributes to a deeper understanding of the development of free trade ports and provides insights and references for other countries and regions.
基金funded by Shaanxi Province Key Industrial Chain Project(2023-ZDLGY-24)Industrialization Project of Shaanxi Provincial Education Department(21JC018)+1 种基金Shaanxi Province Key Research and Development Program(2021ZDLGY13-02)the Open Foundation of State Key Laboratory for Advanced Metals and Materials(2022-Z01).
文摘In order to improve the performance degradation prediction accuracy of proton exchange membrane fuel cell(PEMFC),a fusion prediction method(CKDG)based on adaptive noise complete ensemble empirical mode decomposition(CEEMDAN),kernel principal component analysis(KPCA)and dual attention mechanism gated recurrent unit neural network(DA-GRU)was proposed.CEEMDAN and KPCA were used to extract the input feature data sequence,reduce the influence of random factors,and capture essential feature components to reduce the model complexity.The DA-GRU network helps to learn the feature mapping relationship of data in long time series and predict the changing trend of performance degradation data more accurately.The actual aging experimental data verify the performance of the CKDG method.The results show that under the steady-state condition of 20%training data prediction,the CKDA method can reduce the root mean square error(RMSE)by 52.7%and 34.6%,respectively,compared with the traditional LSTM and GRU neural networks.Compared with the simple DA-GRU network,RMSE is reduced by 15%,and the degree of over-fitting is reduced,which has higher accuracy.It also shows excellent prediction performance under the dynamic condition data set and has good universality.