Recently rare-earth chalcogenides have been revealed as a family of quantum spin liquid(QSL)candidates hosting a large number of members.In this paper we report the crystal growth and magnetic measurements of KErTe_(2...Recently rare-earth chalcogenides have been revealed as a family of quantum spin liquid(QSL)candidates hosting a large number of members.In this paper we report the crystal growth and magnetic measurements of KErTe_(2),which is the first member of telluride in the family.Compared to its cousins of oxides,sulfides and selenides,KErTe_(2) retains the high symmetry of R3m and Er3+ions still sit on a perfect triangular lattice.The separation between adjacent magnetic layers is expectedly increased,which further enhances the two dimensionality of the spin system.Specific heat and magnetic susceptibility measurements on KErTe_(2) single crystals reveal no structural and magnetic transition down to 1.8 K.Most interestingly,the absorption spectrum shows that the charge gap of KErTe_(2) is roughly 0.93±0.35 eV,which is the smallest among all the reported members in the family.This immediately invokes the interest towards metallization even superconductivity using the compound.展开更多
基金supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0302904 and 2016YFA0300504)the National Natural Science Foundation of China (Grant Nos. U1932215 and 11774419)+2 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No. XDB33010100)Postdoctoral Science Foundation of China (Grant No. 2020M670500)the support from Users with Excellence Program of Hefei Science Center and High Magnetic Field Facility,CAS
文摘Recently rare-earth chalcogenides have been revealed as a family of quantum spin liquid(QSL)candidates hosting a large number of members.In this paper we report the crystal growth and magnetic measurements of KErTe_(2),which is the first member of telluride in the family.Compared to its cousins of oxides,sulfides and selenides,KErTe_(2) retains the high symmetry of R3m and Er3+ions still sit on a perfect triangular lattice.The separation between adjacent magnetic layers is expectedly increased,which further enhances the two dimensionality of the spin system.Specific heat and magnetic susceptibility measurements on KErTe_(2) single crystals reveal no structural and magnetic transition down to 1.8 K.Most interestingly,the absorption spectrum shows that the charge gap of KErTe_(2) is roughly 0.93±0.35 eV,which is the smallest among all the reported members in the family.This immediately invokes the interest towards metallization even superconductivity using the compound.