The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional....The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional. The complex is connected through two different types of inter-molecular hydrogen bonds. After photo-excitation, both hydrogen bonds get strengthened, which can facilitate the ESDPT reaction. The scanned potential energy curve along the proton transfer coordinate indicates that the ESDPT reaction proceeds in a stepwise pattern.展开更多
By using scanning tunneling microscope induced luminescence(STML)technique,we investigate systematically the bias-polarity dependent electroluminescence behavior of a single platinum phthalocyanine(PtPc)molecule and t...By using scanning tunneling microscope induced luminescence(STML)technique,we investigate systematically the bias-polarity dependent electroluminescence behavior of a single platinum phthalocyanine(PtPc)molecule and the electron excitation mechanisms behind.The molecule is found to emit light at both bias polarities but with different emission energies.At negative excitation bias,only the fluorescence at 637 nm is observed,which originates from the LUMOtHOMO transition of the neutral PtPc molecule and exhibits stepwise-like increase in emission intensities over three different excitation-voltage regions.Strong fluorescence in region(I)is excited by the carrier injection mechanism with holes injected into the HOMO state first;moderate fluorescence in region(II)is excited by the inelastic electron scattering mechanism;and weak fluorescence in region(III)is associated with an up-conversion process and excited by a combined carrier injection and inelastic electron scattering mechanism involving a spintriplet relay state.At positive excitation bias,more-than-one emission peaks are observed and the excitation and emission mechanisms become complicated.The sharp moleculespecific emission peak at〜911 nm is attributed to the anionic emission of PtPc-originated from the LUMO+1 tLUMO transition,whose excitation is dominated by a carrier injection mechanism with electrons first injected into the LUMO+1 or higher-lying empty orbitals.展开更多
The effect of excitation current intensity on the mechanical properties of ZL205 A castings solidified under a traveling magnetic field was studied. The results of the experiment indicate that the excitation current i...The effect of excitation current intensity on the mechanical properties of ZL205 A castings solidified under a traveling magnetic field was studied. The results of the experiment indicate that the excitation current intensity of the traveling magnetic field has a great influence on the mechanical properties of the ZL205 A castings. When the excitation current intensity is 15 A, the tensile strength and elongation of ZL205 A alloy castings increase 27.2% and 67.7%, respectively, compared with those of the same alloy solidified under gravity. The improvement of mechanical properties is attributed to the decrease of micro-porosity in the alloy. Under the traveling magnetic field, the feeding pressure in the alloy melt before solidification can be enhanced due to the electromagnetic force. Moreover, the melt flow induced by the traveling magnetic field can decrease the temperature gradient. The feeding resistance will be increased because the temperature gradient decrease. So traveling magnetic field has an optimum effect on feeding.展开更多
This paper utilizes multilayer organic light-emitting diodes with a thin layer of dye molecules to study the mech- anism of charge trapping under different electric regimes. It demonstrates that the carrier trapping w...This paper utilizes multilayer organic light-emitting diodes with a thin layer of dye molecules to study the mech- anism of charge trapping under different electric regimes. It demonstrates that the carrier trapping was independent of the current density in devices using fluorescent material as the emitting molecule while this process was exactly opposite when phosphorescent material was used. The triplet-triplet annihilation and dissociation of excitons into free charge carriers was considered to contribute to the decrease in phosphorescent emission under high electric fields. Moreover, the fluorescent dye molecule with a lower energy gap and ionized potential than the host emitter was observed to facilitate the carrier trapping mechanism, and it would produce photon emission.展开更多
The vibration response formulas of the mechanical system under the affect of thevari-frequency exciting force are deduced. It is proved by the theoretical analysis and experimentalresults that the vibration response a...The vibration response formulas of the mechanical system under the affect of thevari-frequency exciting force are deduced. It is proved by the theoretical analysis and experimentalresults that the vibration response amplitude of the mechanical system under the affect of thevari-frequency exciting force is far smaller than that under the affect of the constant frequency exciting force on condition that the exciting force amplitudes are just the same;while the vari-fre-quency rate a increases to 5 Hz per second the vibration amplitude will decrease to 10% only as lowas that under the affect of the constant frequency exciting force. All these conclusions will be of significance for revealing the mechanism of suppressing chatter in van-speed cutting and analyzing theexperimental results of sine-wave scanning exciting test.展开更多
Thin-walled structures are sensitive to vibrate under even very small disturbances. In order to design a suitable controller for vibration suppression of thin-walled smart structures, an electro-mechanically coupled f...Thin-walled structures are sensitive to vibrate under even very small disturbances. In order to design a suitable controller for vibration suppression of thin-walled smart structures, an electro-mechanically coupled finite element(FE) model of smart structures is developed based on first-order shear deformation(FOSD) hypothesis. Considering the vibrations generated by various disturbances, which include free and forced vibrations, a PID control is implemented to damp both the free and forced vibrations. Additionally, an LQR optimal control is applied for comparison.The implemented control strategies are validated by a piezoelectric layered smart plate under various excitations.展开更多
文摘The excited-state double-proton transfer (ESDPT) mechanism of 2-amino-3-methoxypyridine and acetic acid com- plex is studied by the density functional theory (DFT) and time-dependent DFT with CAM-B3LYP functional. The complex is connected through two different types of inter-molecular hydrogen bonds. After photo-excitation, both hydrogen bonds get strengthened, which can facilitate the ESDPT reaction. The scanned potential energy curve along the proton transfer coordinate indicates that the ESDPT reaction proceeds in a stepwise pattern.
基金This work is supported by the National Key R&D Program of China(No.2016YFA0200600 and No.2017YFA0303500)the National Natural Science Foundation of China,the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB36000000)Anhui Initiative in Quantum Information Technologies.
文摘By using scanning tunneling microscope induced luminescence(STML)technique,we investigate systematically the bias-polarity dependent electroluminescence behavior of a single platinum phthalocyanine(PtPc)molecule and the electron excitation mechanisms behind.The molecule is found to emit light at both bias polarities but with different emission energies.At negative excitation bias,only the fluorescence at 637 nm is observed,which originates from the LUMOtHOMO transition of the neutral PtPc molecule and exhibits stepwise-like increase in emission intensities over three different excitation-voltage regions.Strong fluorescence in region(I)is excited by the carrier injection mechanism with holes injected into the HOMO state first;moderate fluorescence in region(II)is excited by the inelastic electron scattering mechanism;and weak fluorescence in region(III)is associated with an up-conversion process and excited by a combined carrier injection and inelastic electron scattering mechanism involving a spintriplet relay state.At positive excitation bias,more-than-one emission peaks are observed and the excitation and emission mechanisms become complicated.The sharp moleculespecific emission peak at〜911 nm is attributed to the anionic emission of PtPc-originated from the LUMO+1 tLUMO transition,whose excitation is dominated by a carrier injection mechanism with electrons first injected into the LUMO+1 or higher-lying empty orbitals.
基金financially supported by the National Basic Research Program of China(2011CB610406)the Natural Science Foundation of Hei Longjiang Province(JC201209)the National Natural Science Foundation of China(51425402)
文摘The effect of excitation current intensity on the mechanical properties of ZL205 A castings solidified under a traveling magnetic field was studied. The results of the experiment indicate that the excitation current intensity of the traveling magnetic field has a great influence on the mechanical properties of the ZL205 A castings. When the excitation current intensity is 15 A, the tensile strength and elongation of ZL205 A alloy castings increase 27.2% and 67.7%, respectively, compared with those of the same alloy solidified under gravity. The improvement of mechanical properties is attributed to the decrease of micro-porosity in the alloy. Under the traveling magnetic field, the feeding pressure in the alloy melt before solidification can be enhanced due to the electromagnetic force. Moreover, the melt flow induced by the traveling magnetic field can decrease the temperature gradient. The feeding resistance will be increased because the temperature gradient decrease. So traveling magnetic field has an optimum effect on feeding.
基金Project supported by the Key Project of Shanghai Education Committee (Grant No. 08ZZ42)Science and Technology Commission of Shanghai Municipal (Grant Nos. 08PJ14053,08DZ1140702 and 08520511200)
文摘This paper utilizes multilayer organic light-emitting diodes with a thin layer of dye molecules to study the mech- anism of charge trapping under different electric regimes. It demonstrates that the carrier trapping was independent of the current density in devices using fluorescent material as the emitting molecule while this process was exactly opposite when phosphorescent material was used. The triplet-triplet annihilation and dissociation of excitons into free charge carriers was considered to contribute to the decrease in phosphorescent emission under high electric fields. Moreover, the fluorescent dye molecule with a lower energy gap and ionized potential than the host emitter was observed to facilitate the carrier trapping mechanism, and it would produce photon emission.
文摘The vibration response formulas of the mechanical system under the affect of thevari-frequency exciting force are deduced. It is proved by the theoretical analysis and experimentalresults that the vibration response amplitude of the mechanical system under the affect of thevari-frequency exciting force is far smaller than that under the affect of the constant frequency exciting force on condition that the exciting force amplitudes are just the same;while the vari-fre-quency rate a increases to 5 Hz per second the vibration amplitude will decrease to 10% only as lowas that under the affect of the constant frequency exciting force. All these conclusions will be of significance for revealing the mechanism of suppressing chatter in van-speed cutting and analyzing theexperimental results of sine-wave scanning exciting test.
基金supported by the National Natural Science Foundation of China(No.51275413)financial support from the China Scholarship Council of China for the first author(No.2010629003)
文摘Thin-walled structures are sensitive to vibrate under even very small disturbances. In order to design a suitable controller for vibration suppression of thin-walled smart structures, an electro-mechanically coupled finite element(FE) model of smart structures is developed based on first-order shear deformation(FOSD) hypothesis. Considering the vibrations generated by various disturbances, which include free and forced vibrations, a PID control is implemented to damp both the free and forced vibrations. Additionally, an LQR optimal control is applied for comparison.The implemented control strategies are validated by a piezoelectric layered smart plate under various excitations.