The membrane bioreactor(MBR)technology is a rising star for wastewater treatment.The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter(DOM)in the s...The membrane bioreactor(MBR)technology is a rising star for wastewater treatment.The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter(DOM)in the system.Three-dimensional excitation-emission matrix(3D-EEM)fluorescence spectroscopy,a powerful tool for the rapid and sensitive characterization of DOM,has been extensively applied in MBR studies;however,only a limited portion of the EEM fingerprinting information was utilized.This paper revisits the principles and methods of fluorescence EEM,and reviews the recent progress in applying EEM to characterize DOM in MBR studies.We systematically introduced the information extracted from EEM by considering the fluorescence peak location/intensity,wavelength regional distribution,and spectral deconvolution(giving fluorescent component loadings/scores),and discussed how to use the information to interpret the chemical compositions,physiochemical properties,biological activities,membrane retention/fouling behaviors,and migration/transformation fates of DOM in MBR systems.In addition to conventional EEM indicators,novel fluorescent parameters are summarized for potential use,including quantum yield,Stokes shift,excited energy state,and fluorescence lifetime.The current limitations of EEM-based DOM characterization are also discussed,with possible measures proposed to improve applications in MBR monitoring.展开更多
The autofluorescence spectroscopy of biologi- cal tissues is a powerful tool for non-invasive detection of tissue pathologies and evaluation of any biochemical and morphological changes arising during the lesions' gr...The autofluorescence spectroscopy of biologi- cal tissues is a powerful tool for non-invasive detection of tissue pathologies and evaluation of any biochemical and morphological changes arising during the lesions' growth. To obtain a full picture of the whole set of endogenous fluorophores appearing in the gastrointestinal (GI) tumors investigated, the technique of excitation-emission matrix (EEM) development was applied in a broad spectral region, covering the ultraviolet and visible spectral ranges. We could thus address a set of diagnostically-important chromophores and their alterations during tumor develop- ment, namely, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavins, porphyrins, while hemo- globin's absorption influence on the spectra obtained could be evaluated as well. Comparisons are presented between EEM data of normal mucosae, benign polyps and malignant carcinoma, and the origins are determined of the fluorescence signals forming these matrices.展开更多
This study examined the dissolved organic matter(DOM) components of cow dung using a combination of fluorescence(excitation–emission matrix,EEM)spectroscopy and parallel factor(PARAFAC) modelling along with eleven tr...This study examined the dissolved organic matter(DOM) components of cow dung using a combination of fluorescence(excitation–emission matrix,EEM)spectroscopy and parallel factor(PARAFAC) modelling along with eleven trace metals using ICP-MS and nutrients(NH_4^+ and NO_3^-) using an AA3 auto analyser. EEM–PARAFAC analysis demonstrated that cow dung predominantly contained only one fluorescent DOM component with two fluorescence peaks(Ex/Em=275/311 nm and Ex/Em=220/311 nm),which could be denoted as tyrosine by comparison with its standard. Occurrence of tyrosine can be further confirmed by the FTIR spectra. Trace metals analysis revealed that Na,K and Mg were significantly higher than Ca,Fe,Mn,Zn Sr,Cu,Ni and Co. The NH_4^+ concentrations were substantially higher than NO_3^-.These results thus indicate that the dissolved components of the cow dung could be useful for better understanding its future uses in various important purposes.展开更多
Hierarchical clustering analysis and principal component analysis (PCA) methods were used to assess the similarities and dissimilarities of the entire Excitation-emission matrix spectroscopy (EEMs) data sets of sa...Hierarchical clustering analysis and principal component analysis (PCA) methods were used to assess the similarities and dissimilarities of the entire Excitation-emission matrix spectroscopy (EEMs) data sets of samples collected from Jiaozhou Bay, China. The results demonstrate that multivariate analysis facilitates the complex data treatment and spectral sorting processes, and also enhances the probability to reveal otherwise hidden information concerning the chemical characteristics of the dissolved organic matter (DOM). The distribution of different water samples as revealed by multivariate results has been used to track the movement of DOM material in the study area, and the interpretation is supported by the results obtained from the numerical simulation model of substance tracing technique, which show that the substance discharged by Haibo River can be distributed in Jiaozhou Bay.展开更多
Dissolved organic matter(DOM) plays an essential role in many geochemical processes,however its complexity, chemical diversity, and molecular composition are poorly understood. Soil samples were collected from 500 veg...Dissolved organic matter(DOM) plays an essential role in many geochemical processes,however its complexity, chemical diversity, and molecular composition are poorly understood. Soil samples were collected from 500 vegetable fields in administrative regions of China' Mainland, of which 122 were selected for further investigation. DOM properties were characterized by three-dimensional excitation-emission matrix(3D-EEM) fuorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry(FTICRMS)(field intensity is 15 Tesla). Our results indicated that the main constituents were UVA humic-like substances, humic-like substances, fulvic acid-like substances, and tyrosine-like substances. A total of 10,989 molecular formulae with a mass range of 100.04 to 799.59 Da were detected, covering the mass spectrometric information of the soil samples from 27 different regions. CHO and CHON molecules were dominant in DOM, whereas lignin, tannins,and aromatic substances served as the main components. The results of cluster analysis revealed that the soil properties in Jiangxi Province were considerably different from those in other regions. The key backgrounds of the DOM molecular characteristics in the vegetablefield soil samples across China' Mainland were provided at the molecular level, with large abundance and great variability.展开更多
基金the National Natural Science Foundation of China(No.51778599)the Beijing Natural Science Foundation(No.LI82044)+1 种基金the CAS Strategic Priority Research Programmer(A)(No.XDA20050103)the Youth Innovation Promotion Association CAS(No.110500EA62)。
文摘The membrane bioreactor(MBR)technology is a rising star for wastewater treatment.The pollutant elimination and membrane fouling performances of MBRs are essentially related to the dissolved organic matter(DOM)in the system.Three-dimensional excitation-emission matrix(3D-EEM)fluorescence spectroscopy,a powerful tool for the rapid and sensitive characterization of DOM,has been extensively applied in MBR studies;however,only a limited portion of the EEM fingerprinting information was utilized.This paper revisits the principles and methods of fluorescence EEM,and reviews the recent progress in applying EEM to characterize DOM in MBR studies.We systematically introduced the information extracted from EEM by considering the fluorescence peak location/intensity,wavelength regional distribution,and spectral deconvolution(giving fluorescent component loadings/scores),and discussed how to use the information to interpret the chemical compositions,physiochemical properties,biological activities,membrane retention/fouling behaviors,and migration/transformation fates of DOM in MBR systems.In addition to conventional EEM indicators,novel fluorescent parameters are summarized for potential use,including quantum yield,Stokes shift,excited energy state,and fluorescence lifetime.The current limitations of EEM-based DOM characterization are also discussed,with possible measures proposed to improve applications in MBR monitoring.
文摘The autofluorescence spectroscopy of biologi- cal tissues is a powerful tool for non-invasive detection of tissue pathologies and evaluation of any biochemical and morphological changes arising during the lesions' growth. To obtain a full picture of the whole set of endogenous fluorophores appearing in the gastrointestinal (GI) tumors investigated, the technique of excitation-emission matrix (EEM) development was applied in a broad spectral region, covering the ultraviolet and visible spectral ranges. We could thus address a set of diagnostically-important chromophores and their alterations during tumor develop- ment, namely, collagen, elastin, nicotinamide adenine dinucleotide (NADH), flavins, porphyrins, while hemo- globin's absorption influence on the spectra obtained could be evaluated as well. Comparisons are presented between EEM data of normal mucosae, benign polyps and malignant carcinoma, and the origins are determined of the fluorescence signals forming these matrices.
基金financially supported by the Key Construction Program of the National 985 Project,Tianjin University,Chinathe National Key R and D Program of China (2016YFA0601000)
文摘This study examined the dissolved organic matter(DOM) components of cow dung using a combination of fluorescence(excitation–emission matrix,EEM)spectroscopy and parallel factor(PARAFAC) modelling along with eleven trace metals using ICP-MS and nutrients(NH_4^+ and NO_3^-) using an AA3 auto analyser. EEM–PARAFAC analysis demonstrated that cow dung predominantly contained only one fluorescent DOM component with two fluorescence peaks(Ex/Em=275/311 nm and Ex/Em=220/311 nm),which could be denoted as tyrosine by comparison with its standard. Occurrence of tyrosine can be further confirmed by the FTIR spectra. Trace metals analysis revealed that Na,K and Mg were significantly higher than Ca,Fe,Mn,Zn Sr,Cu,Ni and Co. The NH_4^+ concentrations were substantially higher than NO_3^-.These results thus indicate that the dissolved components of the cow dung could be useful for better understanding its future uses in various important purposes.
基金supported by the National High-tech Research Project ("863" Project) of China under contract Nos 2003AA635180 and 2006AA09Z167the Public Welfare Project of Marine Science Research under contract No 200705011the open project of Key Laboratory of Integrated Marine Monitoring and Applied Technologies for Harmful Algal Blooms,SOA, China under contract No200811
文摘Hierarchical clustering analysis and principal component analysis (PCA) methods were used to assess the similarities and dissimilarities of the entire Excitation-emission matrix spectroscopy (EEMs) data sets of samples collected from Jiaozhou Bay, China. The results demonstrate that multivariate analysis facilitates the complex data treatment and spectral sorting processes, and also enhances the probability to reveal otherwise hidden information concerning the chemical characteristics of the dissolved organic matter (DOM). The distribution of different water samples as revealed by multivariate results has been used to track the movement of DOM material in the study area, and the interpretation is supported by the results obtained from the numerical simulation model of substance tracing technique, which show that the substance discharged by Haibo River can be distributed in Jiaozhou Bay.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program (STEP,No.2019QZKK0304)the Fundamental Research Funds for the Central Universities (No.E2EG0502×2)the Natural Science Foundation Committee of China (No.41991310)。
文摘Dissolved organic matter(DOM) plays an essential role in many geochemical processes,however its complexity, chemical diversity, and molecular composition are poorly understood. Soil samples were collected from 500 vegetable fields in administrative regions of China' Mainland, of which 122 were selected for further investigation. DOM properties were characterized by three-dimensional excitation-emission matrix(3D-EEM) fuorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry(FTICRMS)(field intensity is 15 Tesla). Our results indicated that the main constituents were UVA humic-like substances, humic-like substances, fulvic acid-like substances, and tyrosine-like substances. A total of 10,989 molecular formulae with a mass range of 100.04 to 799.59 Da were detected, covering the mass spectrometric information of the soil samples from 27 different regions. CHO and CHON molecules were dominant in DOM, whereas lignin, tannins,and aromatic substances served as the main components. The results of cluster analysis revealed that the soil properties in Jiangxi Province were considerably different from those in other regions. The key backgrounds of the DOM molecular characteristics in the vegetablefield soil samples across China' Mainland were provided at the molecular level, with large abundance and great variability.