We experimentally investigated remotely excited Raman optical activity(ROA)using propagating surface plasmons in chiral Ag nanowires.Using chiral fmoc-glycyl-glycine-OH(FGGO)molecules,we first studied the local surfac...We experimentally investigated remotely excited Raman optical activity(ROA)using propagating surface plasmons in chiral Ag nanowires.Using chiral fmoc-glycyl-glycine-OH(FGGO)molecules,we first studied the local surface plasmon-enhanced ROA.We found that the Raman intensity can be excited by left-and right-circularly polarized lights and that the circular intensity difference(CID)can be significantly enhanced.Second,by selecting vibrational modes with large Raman and ROA intensities that are not influenced by chemical enhancements,we studied remotely excited ROA imaging and the CID of FGGO molecules by propagating a plasmonic waveguide using Ag chiral nanostructures.When laser light was radiated on one of the Ag terminals,the measured CID of the FGG at the other terminal showed little change compared to the local excited CID.Meanwhile,when the laser light was radiated on the Ag nanowires(not on the terminals)and was coupled to the nearby nanoantenna,the CID of the ROA could be manipulated by altering the coupling angle between the Ag nanowires.To directly demonstrate the propagation of ROA along the nanowire and its remote detection,we also measured the remotely excited ROA spectra.Our experimental method has the potential to remotely determine the chirality of molecular structures and the absolute configuration or conformation of a chiral live cell.展开更多
基金This work was supported by the National Natural Science Foundation of China(11374353 and 11274149)the Program of Shenyang Key Laboratory of Optoelectronic Materials and Technology(F12-254-1-00).
文摘We experimentally investigated remotely excited Raman optical activity(ROA)using propagating surface plasmons in chiral Ag nanowires.Using chiral fmoc-glycyl-glycine-OH(FGGO)molecules,we first studied the local surface plasmon-enhanced ROA.We found that the Raman intensity can be excited by left-and right-circularly polarized lights and that the circular intensity difference(CID)can be significantly enhanced.Second,by selecting vibrational modes with large Raman and ROA intensities that are not influenced by chemical enhancements,we studied remotely excited ROA imaging and the CID of FGGO molecules by propagating a plasmonic waveguide using Ag chiral nanostructures.When laser light was radiated on one of the Ag terminals,the measured CID of the FGG at the other terminal showed little change compared to the local excited CID.Meanwhile,when the laser light was radiated on the Ag nanowires(not on the terminals)and was coupled to the nearby nanoantenna,the CID of the ROA could be manipulated by altering the coupling angle between the Ag nanowires.To directly demonstrate the propagation of ROA along the nanowire and its remote detection,we also measured the remotely excited ROA spectra.Our experimental method has the potential to remotely determine the chirality of molecular structures and the absolute configuration or conformation of a chiral live cell.