期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Theoretical investigation on the excited state intramolecular proton transfer in Me_2N substituted flavonoid by the time-dependent density functional theory method
1
作者 尹航 石英 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期534-538,共5页
Time-dependent density functional theory(TDDFT) method is used to investigate the details of the excited state intramolecular proton transfer(ESIPT) process and the mechanism for temperature effect on the Enol*/K... Time-dependent density functional theory(TDDFT) method is used to investigate the details of the excited state intramolecular proton transfer(ESIPT) process and the mechanism for temperature effect on the Enol*/Keto*emission ratio for the Me2N-substited flavonoid(MNF) compound. The geometric structures of the S0 and S1 states are denoted as the Enol, Enol*, and Keto*. In addition, the absorption and fluorescence peaks are also calculated. It is noted that the calculated large Stokes shift is in good agreement with the experimental result. Furthermore, our results confirm that the ESIPT process happens upon photoexcitation, which is distinctly monitored by the formation and disappearance of the characteristic peaks of infrared(IR) spectra involved in the proton transfer and in the potential energy curves. Besides, the calculations of highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) reveal that the electronegativity change of proton acceptor due to the intramolecular charge redistribution in the S1 state induces the ESIPT. Moreover, the thermodynamic calculation for the MNF shows that the Enol*/Keto*emission ratio decreasing with temperature increasing arises from the barrier lowering of ESIPT. 展开更多
关键词 time-dependent density functional theory excited state intramolecular proton transfer intramolecular charge transfer transition state
下载PDF
Impact of Polymer Matrix on Polymer Mechanochromism from Excited State Intramolecular Proton Transfer
2
作者 Yu Wu Xin Cheng +3 位作者 Huan Hu Shui Hu Zhimin Ma Zhiyong Ma 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第6期611-616,共6页
Mechanochromic polymers based on non-covalent changes have attracted much attention recently.Herein,we report the impact of inter/intramolecular hydrogen bonds on polymer mechanochromism from the excited state intramo... Mechanochromic polymers based on non-covalent changes have attracted much attention recently.Herein,we report the impact of inter/intramolecular hydrogen bonds on polymer mechanochromism from the excited state intramolecular proton transfer (ESIPT) process.PhMz-NH2-OH and PhMz=2A are designed and obtained by simple and high-yield synthesis,and are connected into polyurethane and poly(methyl acrylate-co-2-ethylhexyl acrylate),respectively.In the initial state,the PhMz-NH2-OH@PU sample shows blue fluorescence from the excited enol form (E*) excitons,owing to intermolecular hydrogen bonds that interrupt the ESIPT reactions but the PhMz=2A@PMA-2-EA sample expresses cyan fluorescence belonging to the excited keto form (K*) emission,implying that the intramolecular hydrogen bonds matter.Furthermore,under stretching,external force can tune the emission of the PhMz=2A@PMA-2-EA sample from K* to E* state.Though external force can putatively still promote a bond rotation,ESIPT reactions remain equivalently interrupted in both the relaxed and stressed states in a hydrogen-bond donating environment.DFT calculation confirms the force-induced increase in dihedral angle for the transition of ESIPT-on/off.Thus,PhMz-NH2-OH@PU and PhMz=2A@PMA-2-EA showed disparate initial ESIPT states and further different responses/sensitivity to force.This study reports a novel and efficient strategy for enriching mechanochromic investigation and extending the applications of ESIPT reactions. 展开更多
关键词 Polymer mechanochromism excited state intramolecular proton transfer Hydrogen bonding Supramolecular chemistry Elastomers
原文传递
A Versatile BenzimidazoleSubstituted Spirolactam Mechanophore:When Excited State Intramolecular Proton Transfer Couples with Rhodamine
3
作者 Huan Hu Xin Cheng +3 位作者 Zhimin Ma Qingyuan Yang Rint PSijbesma Zhiyong Ma 《CCS Chemistry》 CSCD 2024年第7期1798-1809,共12页
Exploration of multicolor mechanochromic bulk polymers based on a single mechanophore is a big challenge to date.Herein,we report a versatile benzimidazole-substituted spirolactam mechanophore where excited state intr... Exploration of multicolor mechanochromic bulk polymers based on a single mechanophore is a big challenge to date.Herein,we report a versatile benzimidazole-substituted spirolactam mechanophore where excited state intramolecular proton transfer(ESIPT)coupled with rhodamine.The mechanophore was facilely synthesized and then covalently linked to polyurethane(PU)chains.The PU film containing the mechanophore(1@PU)showed cooperative photochromism upon irradiation involving simultaneous enhancement of normalized enol and rhodol emissions based on a cooperative ESIPT process and the ring-opening reaction of spirolactam.Moreover,the film exhibited dual-mode multicolor mechanochromism upon stretching and compression.The normalized intensity of enol emission increased and the fluorescence turned from light green to cyan after stretching,then red coloration appeared from colorless after compressing.Control experiments and density functional theory calculations confirmed that the stretch-induced increase of enol emission was attributed to torsion of the dihedral angle between xanthene and benzimidazole in the mechanophore via force-induced disaggregation and direct force action on the isolated mechanophore.Torsion of the dihedral angle and the ring-opening reaction of spirolactam in a single mechanophore occurred sequentially during compression,resulting in an observed red coloration.This study might provide a glimpse into the design of novel multicolor mechanochromic mechanophores. 展开更多
关键词 mechanophore RHODAMINE excited state intramolecular proton transfer cooperative photochromism dual-mode mechanochromism
原文传递
Theoretical study on the mechanism for the excited-state double proton transfer process of an asymmetric Schiff base ligand
4
作者 王正然 周悄 +5 位作者 曹必发 栗博 朱丽霞 张星蕾 尹航 石英 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期715-720,共6页
Excited-state double proton transfer(ESDPT)in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol(HYDRAVH_(2))ligand was studied by the density functional theory and time-dependent density functi... Excited-state double proton transfer(ESDPT)in the 1-[(2-hydroxy-3-methoxy-benzylidene)-hydrazonomethyl]-naphthalen-2-ol(HYDRAVH_(2))ligand was studied by the density functional theory and time-dependent density functional theory method.The analysis of frontier molecular orbitals,infrared spectra,and non-covalent interactions have crossvalidated that the asymmetric structure has an influence on the proton transfer,which makes the proton transfer ability of the two hydrogen protons different.The potential energy surfaces in both S_(0)and S_1 states were scanned with varying O-H bond lengths.The results of potential energy surface analysis adequately proved that the HYDRAVH_(2)can undergo the ESDPT process in the S_1 state and the double proton transfer process is a stepwise proton transfer mechanism.Our work can pave the way towards the design and synthesis of new molecules. 展开更多
关键词 DFT/TDDFT schiff base ligand excited state intramolecular double proton transfer
下载PDF
Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
5
作者 战鸿彬 张恒炜 +3 位作者 江俊杰 王一 费旭 田晶 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期581-588,共8页
The fluorescence mechanism of HBT-HBZ is investigated in this work. A fluorescent probe is used to detect HClO content in living cells and tap water, and its structure after oxidation by HCl O(HBT-ClO) is discussed ba... The fluorescence mechanism of HBT-HBZ is investigated in this work. A fluorescent probe is used to detect HClO content in living cells and tap water, and its structure after oxidation by HCl O(HBT-ClO) is discussed based on the density functional theory(DFT) and time-dependent density functional theory(TDDFT). At the same time, the influence of the probe conformation and the proton transfer site within the excited state molecule on the fluorescence mechanism are revealed. Combined with infrared vibrational spectra and atoms-in-molecules theory, the strength of intramolecular hydrogen bonds in HBT-HBZ and HBT-ClO and their isomers are demonstrated qualitatively. The relationship between the strength of intramolecular hydrogen bonds and dipole moments is discussed. The potential energy curves demonstrate the feasibility of intramolecular proton transfer. The weak fluorescence phenomenon of HBT-HBZ in solution is quantitatively explained by analyzing the frontier molecular orbital and hole electron caused by charge separation. Moreover, when strong cyan fluorescence occurs in solution, the corresponding molecular structure should be HBT-ClO(T). The influence of the intramolecular hydrogen bond formation site on the molecule as a whole is also investigated by electrostatic potential analysis. 展开更多
关键词 BENZOTHIAZOLE excited state intramolecular proton transfer fluorescence mechanism density functional theory
下载PDF
Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule
6
作者 李慧 马丽娜 +1 位作者 尹航 石英 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第9期609-614,共6页
Density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods are used to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited-state intramolecul... Density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods are used to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited-state intramolecular proton transfer(ESIPT) for the 4-N,N-(diethylamino)-2-hydroxybenzaldehyde(DEAHB). The structures of DEAHB and its hydrogenbonded complex in the ground-state and the excited-state are optimized. In addition, the detailed descriptions of frontier molecular orbitals of the DEAHB monomer and DEAHB-DMSO complex are presented. Moreover, the transition density matrix is worked out to gain deeper insight into the orbitals change. It is hoped that the present work not only elaborates different influence mechanisms between intramolecular and intermolecular hydrogen bonding interactions on the ESIPT process for DEAHB, but also may be helpful to design and develop new materials and applications involved DEAHB systems in the future. 展开更多
关键词 time-dependent density functional theory excited state intramolecular proton transfer intramolec-ular charge transfer
下载PDF
Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates 被引量:1
7
作者 孙朝范 曹必发 +1 位作者 尹航 石英 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第5期534-539,共6页
It is of great significance to study the relationship between the excited state intramolecular proton transfer(ESIPT)properties and antioxidant activities of compounds in the field of life sciences.In this work,two no... It is of great significance to study the relationship between the excited state intramolecular proton transfer(ESIPT)properties and antioxidant activities of compounds in the field of life sciences.In this work,two novel compounds 5HF-OMe and 5HF-NH2 are designed through introducing a methoxy-and amino-group into the structure of 5-hydroxyflavone(5HF)respectively.The relationship between the ESIPT reaction and antioxidant activities of the three compounds is studied via the density functional theory(DFT)and time-dependent DFT(TD-DFT)methods.The calculated potential energy curves suggest that the rate of ESIPT reaction will gradually slow down from 5HF to 5HF-OMe and 5HF-NH2.In addition,the antioxidant activities of the three compounds gradually enhance from 5HF to 5HF-OMe and 5HF-NH2,which can be seen from the calculated energy gaps and ionization potential values.Interestingly,the above results imply that the rate of ESIPT reaction has a negative relationship with the antioxidant activities of the compounds,i.e.,the slower rate of ESIPT reaction will reflect the higher antioxidant activity of the compound,which will provide valuable reference for detecting the antioxidant activity of compound via the photophysical method. 展开更多
关键词 5-hydroxyflavone excited state intramolecular proton transfer antioxidant activity density functional theory
下载PDF
Theoretical investigation of fluorescence changes caused by methanol bridge based on ESIPT reaction
8
作者 张星蕾 朱丽霞 +6 位作者 王正然 曹必发 周悄 李尤 栗博 尹航 石英 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第11期637-643,共7页
The different fluorescence behavior caused by the excited state proton transfer in 3-hydroxy-4-pyridylisoquinoline(2a)compound has been theoretically investigated.Our calculation results illustrate that the 2a monomer... The different fluorescence behavior caused by the excited state proton transfer in 3-hydroxy-4-pyridylisoquinoline(2a)compound has been theoretically investigated.Our calculation results illustrate that the 2a monomer in tetrahydrofuran solvent would not occur proton transfer spontaneously,while the 2a complex in methanol(MeOH)solvent can undergo an asynchronous excited state intramolecular proton transfer(ESIPT)process.The result was confirmed by analyzing the related structural parameters,infrared vibration spectrum and reduced density gradient isosurfaces.Moreover,the potential curves revealed that with the bridging of single MeOH molecular the energy barrier of ESIPT was modulated effectively.It was distinctly reduced to 4.80 kcal/mol in 2a-MeOH complex from 25.01 kcal/mol in 2a monomer.Accordingly,the ESIPT process induced a fluorochromic phenomenon with the assistant of proton-bridge.The elucidation of the mechanism of solvent discoloration will contribute to the design and synthesis of fluorogenic dyes as environment-sensitive probes. 展开更多
关键词 DFT/TDDFT fluorochromic excited state intramolecular proton transfer methanol bridge
下载PDF
Theoretical insights into photochemical ESITP process for novel DMP-HBT-py compound
9
作者 杨光 陈凯锋 +1 位作者 王岗 杨大鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第10期222-226,共5页
We execute the density functional theory(DFT) and time-dependent density functional theory(TDDFT) approaches to make a detailed exploration about excited state luminescent properties as well as excited state intramole... We execute the density functional theory(DFT) and time-dependent density functional theory(TDDFT) approaches to make a detailed exploration about excited state luminescent properties as well as excited state intramolecular proton transfer(ESIPT) mechanism for the novel 2,6-dimethyl phenyl(DMP-HBT-py) system. Firstly, we check and confirm the formation and stabilization of hydrogen bonding interaction for DMP-HBT-py. Via optimized geometrical parameters of primary chemical bond and infrared(IR) spectra, we find O–H··· N hydrogen bond of DMP-HBT-py should be strengthened in S1 state. Insights into frontier molecular orbitals(MOs) analyses, we infer charge redistribution and charge transfer(ICT)phenomena motivate ESIPT trend. Via probing into potential energy curves(PECs) in related electronic states, we come up with the ultrafast ESIPT behavior due to low potential barrier. Furthermore, we search the reaction transition state(TS)structure, the ultrafast ESIPT behavior and mechanism of DMP-HBT-py compound can be re-confirmed. We sincerely wish this work could play roles in further developing novel applications based on DMP-HBT-py compound and in promoting efficient solid emitters in OLEDs in future. 展开更多
关键词 infrared vibrational spectra intramolecular charge transfer potential energy curve excited state intramolecular proton transfer
下载PDF
An ESIPT-based NIR-fluorescent probe for exosome labeling and in situ imaging
10
作者 Jipeng Ding Runsha Xiao +5 位作者 Anyao Bi Guanyang Chen Nengwei Zhang Zihua Chen Xueping Feng Wenbin Zeng 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第11期220-224,共5页
Exosomes play significant roles in physiological and tumorigenic processes and it is desirable to visualize and track the exosomes.Herein,a novel amphiphilic fluorescent probe HBT-Exo based on excited-state intramolec... Exosomes play significant roles in physiological and tumorigenic processes and it is desirable to visualize and track the exosomes.Herein,a novel amphiphilic fluorescent probe HBT-Exo based on excited-state intramolecular proton transfer(ESIPT)mechanism is reported for exosome-labeling.Its ESIPT characteristics were confirmed by both theory calculation and experimental observation,which enable the probe to show a large Stokes shift as well as near-infrared(NIR)keto-form emission.HBT-Exo displayed excellent biocompatibility and remarkable efficiency for exosome-labeling in gastric cancer cells.Furthermore,the labeled exosomes were successfully applied for the real-time in situ imaging in mouse models. 展开更多
关键词 EXOSOME Fluorescent probe excited state intramolecular proton transfer Gastric cancer BIOIMAGING
原文传递
The exquisite integration of ESIPT, PET and AIE for constructing fluorescent probe for Hg(II) detection and poisoning
11
作者 Xiang Cheng Shuai Huang +7 位作者 Qian Lei Fei Chen Fan Zheng Shibo Zhong Xueyan Huang Bin Feng Xueping Feng Wenbin Zeng 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第4期1861-1864,共4页
Excessive mercury ions(Hg^(2+)) in the environment can accumulate in human body along with the food chain to cause serious physiological reactions.The fluorescence probes were considered as convenient tool with great ... Excessive mercury ions(Hg^(2+)) in the environment can accumulate in human body along with the food chain to cause serious physiological reactions.The fluorescence probes were considered as convenient tool with great potential for Hg^(2+) detection.Most existing probes suffer from aggregation-induced quenching(ACQ) effects and insufficient sensitivity.Herein,a novel type of fluorophore was developed by combining the aggregation-induced emission(AIE) and excited state intramolecular proton transfer(ESIPT) characteristics.Subsequently,a phenyl thioformate group with photoinduced electron transfer(PET)effect was connected to give an efficient "turn-on" probe(HTM),which exhibited good selectivity toward Hg^(2+),short response time(30 min),coupled with extremely low detection limit(LOD=1.68 nmol/L).In addition,HTM was used successfully in real samples,cells and drug evaluation,underlying the superiority of HTM to detect Hg^(2+) in practical applications. 展开更多
关键词 Aggregation-induced emission excited state intramolecular proton transfer Photoinduced electron transfer Mercury ions Fluorescent imaging
原文传递
Acid-base Vapor Sensing Enabled by ESIPT-attributed Cd(II) Coordination Polymer with Switchable Luminescence
12
作者 FU Pengyan MO Junting +3 位作者 SUN Sisi YIN Shaoyun WANG Haiping PAN Mei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2020年第5期755-759,共5页
Fluorescence materials based on excited state intramolecular proton transfer(ESIPT)have attracted great attentiori due to the unique four-level energy states.Herein,we report the assembly of a Cd-LF coordination polym... Fluorescence materials based on excited state intramolecular proton transfer(ESIPT)have attracted great attentiori due to the unique four-level energy states.Herein,we report the assembly of a Cd-LF coordination polymer from purposely designed LF(H2hpi2cf)ligand,which can present switchable luminescence behavior by gain or loss protons originated in uncoordinated ESIPT sites and serve as acid-base vapor sensors.Fabricated into in-situ grown film or transparent ink by simple methods,Cd-LF presents facile and portable amine sensor for food spoilage detection and fluorescent anti-counterfeiting ink applications. 展开更多
关键词 excited state intramolecular proton transfer Coordination polymer Acid-base vapor Fluorescence sensor Anti-counterfeiting ink
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部