A method is presented for optimizing multiple-output exclusive-OR logic circuits. The effect of common gates on the optimization of logic circuits is studied. The concepts of common function, residue function and rema...A method is presented for optimizing multiple-output exclusive-OR logic circuits. The effect of common gates on the optimization of logic circuits is studied. The concepts of common function, residue function and remainder term are introduced. A computer method for searching the optimum polarity is proposed. This method can be used to design the logic circuit which needs the minimum number of exclusive-OR gates.展开更多
Delay optimization has recently attracted signif-icant attention. However, few studies have focused on the delay optimization of mixed-polarity Reed-Muller (MPRM) logic circuits. In this paper, we propose an efficient...Delay optimization has recently attracted signif-icant attention. However, few studies have focused on the delay optimization of mixed-polarity Reed-Muller (MPRM) logic circuits. In this paper, we propose an efficient delay op-timization approach (EDOA) for MPRM logic circuits under the unit delay model, which can derive an optimal MPRM logic circuit with minimum delay. First, the simplest MPRM expression with the fewest number of product terms is ob-tained using a novel Reed-Muller expression simplification approach (RMESA) considering don't-care terms. Second, a minimum delay decomposition approach based on a Huffman tree construction algorithm is utilized on the simplest MPRM expression. Experimental results on MCNC benchmark cir-cuits demonstrate that compared to the Berkeley SIS 1.2 and ABC, the EDOA can significantly reduce delay for most cir-cuits. Furthermore, for a few circuits, while reducing delay, the EDOA incurs an area penalty.展开更多
The physical limitations of complementary metal-oxide semiconductor?(CMOS) technology have led many researchers to consider other alternative technologies. Quantum-dot cellular automate (QCA), single electron tunnelin...The physical limitations of complementary metal-oxide semiconductor?(CMOS) technology have led many researchers to consider other alternative technologies. Quantum-dot cellular automate (QCA), single electron tunneling (SET), tunneling phase logic (TPL), spintronic devices, etc., are some of the nanotechnologies that are being considered as possible replacements for CMOS. In these nanotechnologies, the basic logic units used to implement circuits are majority and/or minority gates. Several majority/minority logic circuit synthesis methods have been proposed. In this paper, we give a comparative study of the existing majority/minority logic circuit synthesis methods that are capable of synthesizing multi-input multi-output Boolean functions. Each of these methods is discussed in detail. The optimization priorities given to different factors such as gates, levels, inverters, etc., vary with technologies. Based on these optimization factors, the results obtained from different synthesis methods are compared. The paper also analyzes the optimization capabilities of different methods and discusses directions for future research in the synthesis of majority/minority logic networks.展开更多
针对混合极性RM(Reed-Muller)电路逻辑综合中的极性转换和极性优化问题,提出了基于对偶逻辑的极性转换和极性优化方法.从理论上证明了所提出方法的正确性,并用实验验证了其有效性和可行性.所提出方法有助于将较成熟的MPRM(Mixed-Polarit...针对混合极性RM(Reed-Muller)电路逻辑综合中的极性转换和极性优化问题,提出了基于对偶逻辑的极性转换和极性优化方法.从理论上证明了所提出方法的正确性,并用实验验证了其有效性和可行性.所提出方法有助于将较成熟的MPRM(Mixed-Polarity RM)极性转换和极性优化方法应用于MPDRM(Mixed-Polarity Dual form of RM).对15个基于XOR的MCNC电路进行逻辑综合然后映射到FPGA(Field Programmable Gate Array)的实验结果表明,从平均结果来看,与逻辑综合工具Espresso以及ABC的结果相比,混合极性RM电路能够获得面积和延时的优势,并且MPDRM电路极性优化结果能够得到最为优化的FPGA实现.展开更多
文摘A method is presented for optimizing multiple-output exclusive-OR logic circuits. The effect of common gates on the optimization of logic circuits is studied. The concepts of common function, residue function and remainder term are introduced. A computer method for searching the optimum polarity is proposed. This method can be used to design the logic circuit which needs the minimum number of exclusive-OR gates.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 61370059 and 61232009)Beijing Natural Science Foundation (4152030), Fundamental Research Funds for the Central Universities (YWF-15-GJSYS-085, YWF-14-JSJXY-14)+1 种基金Open Project Program of National Engineering Research Center for Science & Technology Resources Sharing Service (Beihang University), the fund of the State Key Laboratory of Computer Architecture (CARCH201507)the fund of the State Key Laboratory of Software Development Environment (SKLSDE-2016ZX-13).
文摘Delay optimization has recently attracted signif-icant attention. However, few studies have focused on the delay optimization of mixed-polarity Reed-Muller (MPRM) logic circuits. In this paper, we propose an efficient delay op-timization approach (EDOA) for MPRM logic circuits under the unit delay model, which can derive an optimal MPRM logic circuit with minimum delay. First, the simplest MPRM expression with the fewest number of product terms is ob-tained using a novel Reed-Muller expression simplification approach (RMESA) considering don't-care terms. Second, a minimum delay decomposition approach based on a Huffman tree construction algorithm is utilized on the simplest MPRM expression. Experimental results on MCNC benchmark cir-cuits demonstrate that compared to the Berkeley SIS 1.2 and ABC, the EDOA can significantly reduce delay for most cir-cuits. Furthermore, for a few circuits, while reducing delay, the EDOA incurs an area penalty.
文摘The physical limitations of complementary metal-oxide semiconductor?(CMOS) technology have led many researchers to consider other alternative technologies. Quantum-dot cellular automate (QCA), single electron tunneling (SET), tunneling phase logic (TPL), spintronic devices, etc., are some of the nanotechnologies that are being considered as possible replacements for CMOS. In these nanotechnologies, the basic logic units used to implement circuits are majority and/or minority gates. Several majority/minority logic circuit synthesis methods have been proposed. In this paper, we give a comparative study of the existing majority/minority logic circuit synthesis methods that are capable of synthesizing multi-input multi-output Boolean functions. Each of these methods is discussed in detail. The optimization priorities given to different factors such as gates, levels, inverters, etc., vary with technologies. Based on these optimization factors, the results obtained from different synthesis methods are compared. The paper also analyzes the optimization capabilities of different methods and discusses directions for future research in the synthesis of majority/minority logic networks.
文摘针对混合极性RM(Reed-Muller)电路逻辑综合中的极性转换和极性优化问题,提出了基于对偶逻辑的极性转换和极性优化方法.从理论上证明了所提出方法的正确性,并用实验验证了其有效性和可行性.所提出方法有助于将较成熟的MPRM(Mixed-Polarity RM)极性转换和极性优化方法应用于MPDRM(Mixed-Polarity Dual form of RM).对15个基于XOR的MCNC电路进行逻辑综合然后映射到FPGA(Field Programmable Gate Array)的实验结果表明,从平均结果来看,与逻辑综合工具Espresso以及ABC的结果相比,混合极性RM电路能够获得面积和延时的优势,并且MPDRM电路极性优化结果能够得到最为优化的FPGA实现.