Objective This study aimed to investigate the effect and underlying mechanism of Fructus lycii in improving exercise fatigue.Methods A network pharmacological approach was used to explore potential mechanisms of actio...Objective This study aimed to investigate the effect and underlying mechanism of Fructus lycii in improving exercise fatigue.Methods A network pharmacological approach was used to explore potential mechanisms of action of Fructus lycii.Skeletal muscle C2C12 cells and immunofluorescence were employed to verify the effect and mechanism of the representative components in Fructus lycii predicted by network pharmacological analysis.Results Six potential active components,namely quercetin,β-sitosterol,stigmasterol,7-Omethylluteolin-6-C-beta-glucoside_qt,atropine,and glycitein,were identified to have potency in improving exercise fatigue via multiple pathways,such as the PI3K-Akt,neuroactive ligand-receptor interaction,IL-17,TNF,and MAPK signaling pathways.The immunofluorescence results indicated that quercetin,a significant active component in Fructus lycii,increased the mean staining area of 2-NBDG,TMRM,and MitoTracker,and decreased the area of CellRox compared to the control.Furthermore,the protein expression levels of p-38 MAPK,p-MAPK,p-JNK,p-PI3K,and p-AKT markedly increased after quercetin treatment.Conclusion Fructus lycii might alleviate exercise fatigue through multiple components and pathways.Among these,quercetin appears to improve exercise fatigue by enhancing energy metabolism and reducing oxidative stress.The PI3K-AKT and MAPK signaling pathways also appear to play a role in this process.展开更多
Accurate detection of exercise fatigue based on physiological signals is vital for reason-able physical activity.As a non-invasive technology,phonocardiogram(PCG)signals possess arobust capability to reflect cardiovas...Accurate detection of exercise fatigue based on physiological signals is vital for reason-able physical activity.As a non-invasive technology,phonocardiogram(PCG)signals possess arobust capability to reflect cardiovascular information,and their data acquisition devices are quiteconvenient.In this study,a novel hybrid approach of fractional Fourier transform(FRFT)com-bined with linear and discrete wavelet transform(DWT)features extracted from PCG is proposedfor PCG multi-class classification.The proposed system enhances the fatigue detection performanceby combining optimized FRFT features with an effective aggregation of linear features and DWTfeatures.The FRFT technique is employed to convert the 1-D PCG signal into 2-D image which issent to a pre-trained convolutional neural network structure,called VGG-16.The features from theVGG-16 were concatenated with the linear and DWT features to form fused features.The fusedfeatures are sent to support vector machine(SVM)to distinguish six distinct fatigue levels.Experi-mental results demonstrate that the proposed fused features outperform other feature combinationssignificantly.展开更多
Exercise fatigue is a physiological phenomenon where the body cannot maintain a specific level after being stimulated by excessive exercise.Its five main theories include“energy depletion”,“accumulation of metaboli...Exercise fatigue is a physiological phenomenon where the body cannot maintain a specific level after being stimulated by excessive exercise.Its five main theories include“energy depletion”,“accumulation of metabolites”,“homeostasis disorder of the internal environment”,“free radicals”,and“central nervous system protection inhibition”.The imbalance of intestinal flora caused by vigorous exercise can further lead to fatigue.Therefore,maintaining healthy intestinal flora is crucial for athlete health and performance.Recent studies have demonstrated that probiotics can regulate intestinal flora and alleviate exercise fatigue;however,there are no systematic reviews on the anti-fatigue effects of probiotics.Based on the mechanisms of exercise-induced fatigue,this article summarizes the effects and mechanisms by which probiotics combat exercise fatigue,aiming to provide research ideas for the development of probiotics that prevent exercise fatigue.展开更多
[Objectives]This study was conducted to investigate the effects of Astragalus membranaceus in different groups on energy metabolism and CNTF protein expression in skeletal muscle of exercise-induced fatigue rats.[Meth...[Objectives]This study was conducted to investigate the effects of Astragalus membranaceus in different groups on energy metabolism and CNTF protein expression in skeletal muscle of exercise-induced fatigue rats.[Methods]Thirty-five clean male SD rats were randomly divided into a normal group,and low-,meddle-and high-dose groups of A.membranaceus aqueous solution,with 7 rats in each group.The low-dose,medium-dose and high-dose groups were given by gavage at 0.65,1.3 and 2.6 g/kg,respectively,while the normal group and the model group were given normal food and water.The weight of rats was observed.The contents of serum urea,lactate,muscle glycogen,liver glycogen and CNTF expression were detected.[Results]After modeling,compared with the normal group,the serum lactate and urea contents of rats in the model group significantly increased(P<0.01),while the muscle glycogen content(P<0.01)and liver glycogen content(P<0.05)of the skeletal muscle significantly decreased.Compared with the model group,the low-,meddle-and high-dose groups of A.membranaceus significantly reduced the levels of lactate and urea in serum(P<0.01),while the levels of muscle glycogen and liver glycogen in the skeletal muscle significantly increased(P<0.01,P<0.05).[Conclusions]This study provides a good research foundation for the treatment of exercise-induced fatigue using traditional Chinese herb A.membranaceus in modern clinical practice.展开更多
Objective:To evaluate the anti-fatigue effects of different extracts from Cistanche tubulosa(Schenk)Wight(C.tubulosa,Rou Cong Rong),focusing on central and exercise-induced fatigue in mice.This study investigated the ...Objective:To evaluate the anti-fatigue effects of different extracts from Cistanche tubulosa(Schenk)Wight(C.tubulosa,Rou Cong Rong),focusing on central and exercise-induced fatigue in mice.This study investigated the pharmacological effects of the total oligosaccharides,polysaccharides,and phenylethanoid glycosides(CPhGs)extracted from C.tubulosa.Methods: Models of sleep deprivation and forced swimming fatigue were established to simulate central and exercise-induced fatigue.The mice were treated with different extracts of C.tubulosa,and their effects were assessed using behavioral tests to measure exercise capacity,learning,and memory function.Biochemical analyses were performed to evaluate the changes in serum and brain neurotransmitter levels,liver and muscle glycogen storage,and various fatigue-related biomarkers.Results: This study found that treatment with C.tubulosa extract improved exercise capacity,learning,and memory in mice.Total oligosaccharides from C.tubulosa enhanced adrenocorticotropic hormone,cholinesterase,and thyroid-stimulating hormone levels,reduced cortisol levels in central fatigue models,and ameliorated biochemical markers of exercise-induced fatigue,including lowering lactic acid,blood urea nitrogen,and malondialdehyde levels.Among the tested extracts,the total oligosaccharides showed the most comprehensive anti-fatigue effects.Conclusion: The anti-fatigue effects of C.tubulosa,particularly those of its total oligosaccharides,are pronounced in both central and exercise-induced fatigue.These effects are mediated by the regulation of neurotransmitter levels,enhancement of glycogen storage,and improvement of antioxidant enzyme activity,suggesting potential therapeutic benefits in fatigue-related conditions.展开更多
基金funded by China’s National Key R&D Programmers for“Hi-Tech Winter Olympics”Special Project[2020YFF0305001]。
文摘Objective This study aimed to investigate the effect and underlying mechanism of Fructus lycii in improving exercise fatigue.Methods A network pharmacological approach was used to explore potential mechanisms of action of Fructus lycii.Skeletal muscle C2C12 cells and immunofluorescence were employed to verify the effect and mechanism of the representative components in Fructus lycii predicted by network pharmacological analysis.Results Six potential active components,namely quercetin,β-sitosterol,stigmasterol,7-Omethylluteolin-6-C-beta-glucoside_qt,atropine,and glycitein,were identified to have potency in improving exercise fatigue via multiple pathways,such as the PI3K-Akt,neuroactive ligand-receptor interaction,IL-17,TNF,and MAPK signaling pathways.The immunofluorescence results indicated that quercetin,a significant active component in Fructus lycii,increased the mean staining area of 2-NBDG,TMRM,and MitoTracker,and decreased the area of CellRox compared to the control.Furthermore,the protein expression levels of p-38 MAPK,p-MAPK,p-JNK,p-PI3K,and p-AKT markedly increased after quercetin treatment.Conclusion Fructus lycii might alleviate exercise fatigue through multiple components and pathways.Among these,quercetin appears to improve exercise fatigue by enhancing energy metabolism and reducing oxidative stress.The PI3K-AKT and MAPK signaling pathways also appear to play a role in this process.
基金the National Natural Sci-ence Foundation of China(No.62301056)the Fundamental Research Funds for Central Universities(No.2022QN005).
文摘Accurate detection of exercise fatigue based on physiological signals is vital for reason-able physical activity.As a non-invasive technology,phonocardiogram(PCG)signals possess arobust capability to reflect cardiovascular information,and their data acquisition devices are quiteconvenient.In this study,a novel hybrid approach of fractional Fourier transform(FRFT)com-bined with linear and discrete wavelet transform(DWT)features extracted from PCG is proposedfor PCG multi-class classification.The proposed system enhances the fatigue detection performanceby combining optimized FRFT features with an effective aggregation of linear features and DWTfeatures.The FRFT technique is employed to convert the 1-D PCG signal into 2-D image which issent to a pre-trained convolutional neural network structure,called VGG-16.The features from theVGG-16 were concatenated with the linear and DWT features to form fused features.The fusedfeatures are sent to support vector machine(SVM)to distinguish six distinct fatigue levels.Experi-mental results demonstrate that the proposed fused features outperform other feature combinationssignificantly.
基金supported by the Sichuan Province Key Research and Development Program(2024YFHZ0077)the Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202300204)+2 种基金the Major Science and Technology Special Projects in Tibet Autonomous Region(No.XZ202201ZD0001N)the University Innovation Research Group in Chongqing(No.CXQT21007)the Key Construction Disciplines of Traditional Chinese Medicine in Chongqing(2021-4322190044).
文摘Exercise fatigue is a physiological phenomenon where the body cannot maintain a specific level after being stimulated by excessive exercise.Its five main theories include“energy depletion”,“accumulation of metabolites”,“homeostasis disorder of the internal environment”,“free radicals”,and“central nervous system protection inhibition”.The imbalance of intestinal flora caused by vigorous exercise can further lead to fatigue.Therefore,maintaining healthy intestinal flora is crucial for athlete health and performance.Recent studies have demonstrated that probiotics can regulate intestinal flora and alleviate exercise fatigue;however,there are no systematic reviews on the anti-fatigue effects of probiotics.Based on the mechanisms of exercise-induced fatigue,this article summarizes the effects and mechanisms by which probiotics combat exercise fatigue,aiming to provide research ideas for the development of probiotics that prevent exercise fatigue.
基金Supported by Undergraduate Innovation and Entrepreneurship Training Program of Guizhou University of Traditional Chinese Medicine(GZYDCHZ[2019]42)National Key R&D Plan(2019YFC1712500)Guizhou Provincial Science and Technology Planning Project(QKHHBZ[2020]3003).
文摘[Objectives]This study was conducted to investigate the effects of Astragalus membranaceus in different groups on energy metabolism and CNTF protein expression in skeletal muscle of exercise-induced fatigue rats.[Methods]Thirty-five clean male SD rats were randomly divided into a normal group,and low-,meddle-and high-dose groups of A.membranaceus aqueous solution,with 7 rats in each group.The low-dose,medium-dose and high-dose groups were given by gavage at 0.65,1.3 and 2.6 g/kg,respectively,while the normal group and the model group were given normal food and water.The weight of rats was observed.The contents of serum urea,lactate,muscle glycogen,liver glycogen and CNTF expression were detected.[Results]After modeling,compared with the normal group,the serum lactate and urea contents of rats in the model group significantly increased(P<0.01),while the muscle glycogen content(P<0.01)and liver glycogen content(P<0.05)of the skeletal muscle significantly decreased.Compared with the model group,the low-,meddle-and high-dose groups of A.membranaceus significantly reduced the levels of lactate and urea in serum(P<0.01),while the levels of muscle glycogen and liver glycogen in the skeletal muscle significantly increased(P<0.01,P<0.05).[Conclusions]This study provides a good research foundation for the treatment of exercise-induced fatigue using traditional Chinese herb A.membranaceus in modern clinical practice.
基金supported by the National Key Research and Development Program of China(2017YFC1702400).
文摘Objective:To evaluate the anti-fatigue effects of different extracts from Cistanche tubulosa(Schenk)Wight(C.tubulosa,Rou Cong Rong),focusing on central and exercise-induced fatigue in mice.This study investigated the pharmacological effects of the total oligosaccharides,polysaccharides,and phenylethanoid glycosides(CPhGs)extracted from C.tubulosa.Methods: Models of sleep deprivation and forced swimming fatigue were established to simulate central and exercise-induced fatigue.The mice were treated with different extracts of C.tubulosa,and their effects were assessed using behavioral tests to measure exercise capacity,learning,and memory function.Biochemical analyses were performed to evaluate the changes in serum and brain neurotransmitter levels,liver and muscle glycogen storage,and various fatigue-related biomarkers.Results: This study found that treatment with C.tubulosa extract improved exercise capacity,learning,and memory in mice.Total oligosaccharides from C.tubulosa enhanced adrenocorticotropic hormone,cholinesterase,and thyroid-stimulating hormone levels,reduced cortisol levels in central fatigue models,and ameliorated biochemical markers of exercise-induced fatigue,including lowering lactic acid,blood urea nitrogen,and malondialdehyde levels.Among the tested extracts,the total oligosaccharides showed the most comprehensive anti-fatigue effects.Conclusion: The anti-fatigue effects of C.tubulosa,particularly those of its total oligosaccharides,are pronounced in both central and exercise-induced fatigue.These effects are mediated by the regulation of neurotransmitter levels,enhancement of glycogen storage,and improvement of antioxidant enzyme activity,suggesting potential therapeutic benefits in fatigue-related conditions.