期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Treadmill exercise improves hippocampal neural plasticity and relieves cognitive deficits in a mouse model of epilepsy
1
作者 Hang Yu Mingting Shao +4 位作者 Xi Luo Chaoqin Pang Kwok-Fai So Jiandong Yu Li Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期657-662,共6页
Epilepsy frequently leads to cognitive dysfunction and approaches to treatment remain limited.Although regular exercise effectively improves learning and memory functions across multiple neurological diseases,its appl... Epilepsy frequently leads to cognitive dysfunction and approaches to treatment remain limited.Although regular exercise effectively improves learning and memory functions across multiple neurological diseases,its application in patients with epilepsy remains controversial.Here,we adopted a 14-day treadmill-exercise paradigm in a pilocarpine injection-induced mouse model of epilepsy.Cognitive assays confirmed the improvement of object and spatial memory after endurance training,and electrophysiological studies revealed the maintenance of hippocampal plasticity as a result of physical exercise.Investigations of the mechanisms underlying this effect revealed that exercise protected parvalbumin interneurons,probably via the suppression of neuroinflammation and improved integrity of blood-brain barrier.In summary,this work identified a previously unknown mechanism through which exercise improves cognitive rehabilitation in epilepsy. 展开更多
关键词 blood-brain barrier COGNITION HIPPOCAMPUS INTERNEURONS long-term potentiation microglial cell NEUROINFLAMMATION spatial memory temporal epilepsy treadmill exercise
下载PDF
Treadmill exercise exerts a synergistic effect with bone marrow mesenchymal stem cell-derived exosomes on neuronal apoptosis and synaptic-axonal remodeling 被引量:1
2
作者 Xin-Hong Jiang Hang-Feng Li +5 位作者 Man-Li Chen Yi-Xian Zhang Hong-Bin Chen Rong-Hua Chen Ying-Chun Xiao Nan Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1293-1299,共7页
Treadmill exercise and mesenchymal stem cell transplantation are both practical and effective methods for the treatment of cerebral ischemia.However,whether there is a synergistic effect between the two remains unclea... Treadmill exercise and mesenchymal stem cell transplantation are both practical and effective methods for the treatment of cerebral ischemia.However,whether there is a synergistic effect between the two remains unclear.In this study,we established rat models of ischemia/reperfusion injury by occlusion of the middle cerebral artery for 2 hours and reperfusion for 24 hours.Rat models were perfused with bone marrow mesenchymal stem cell-derived exosomes(MSC-exos)via the tail vein and underwent 14 successive days of treadmill exercise.Neurological assessment,histopathology,and immunohistochemistry results revealed decreased neuronal apoptosis and cerebral infarct volume,evident synaptic formation and axonal regeneration,and remarkably recovered neurological function in rats subjected to treadmill exercise and MSC-exos treatment.These effects were superior to those in rats subjected to treadmill exercise or MSC-exos treatment alone.Mechanistically,further investigation revealed that the activation of JNK1/c-Jun signaling pathways regulated neuronal apoptosis and synaptic-axonal remodeling.These findings suggest that treadmill exercise may exhibit a synergistic effect with MSC-exos treatment,which may be related to activation of the JNK1/c-Jun signaling pathway.This study provides novel theoretical evidence for the clinical application of treadmill exercise combined with MSC-exos treatment for ischemic cerebrovascular disease. 展开更多
关键词 apoptosis axonal regeneration c-Jun EXOSOMES functional remodeling ischemic stroke JNK1 mesenchymal stem cells synaptic formation treadmill exercise
下载PDF
Enhancement of motor functional recovery in thoracic spinal cord injury: voluntary wheel running versus forced treadmill exercise
3
作者 Do-Hun Lee Dan Cao +4 位作者 Younghye Moon Chen Chen Nai-Kui Liu Xiao-Ming Xu Wei Wu 《Neural Regeneration Research》 SCIE CAS 2025年第3期836-844,共9页
Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery ... Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury. 展开更多
关键词 behavioral assessment motor function neural plasticity running wheel exercise spinal cord injury treadmill exercise voluntary exercise
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部