The stacking and aggregation of graphene nanosheets have been obstacles to their application as electrode materials for microelectronic devices.This study deploys a one-step,scalable,facile electrochemical exfoliation...The stacking and aggregation of graphene nanosheets have been obstacles to their application as electrode materials for microelectronic devices.This study deploys a one-step,scalable,facile electrochemical exfoliation technique to fabricate nitrogen(N)and chlorine(Cl)co-doped graphene nanosheets(i.e.,N-Cl-G)via the application of constant voltage on graphite in a mixture of 0.1 mol/L H_(2)SO_(4)and 0.1 mol/L NH_(4)Cl without using dangerous and exhaustive operation.The introduction of Cl(with its large radius)and N,both with high electrical negativity,facilitates the modulation of the electronic structure of graphene and creation of rich structural defects in it.Consequently,in the as-constructed supercapacitors,N-Cl-G exhibits a high specific capacitance of 77 F/g at 0.2 A/g and remarkable cycling stability with 91.7%retention of initial capacitance after 20,000 cycles at 10 A/g.Furthermore,a symmetrical supercapacitor assembled with N-Cl-G as the positive and negative electrodes(denoted as N-Cl-G//N-Cl-G)exhibits an energy density of 3.38 Wh/kg at a power density of 600 W/kg and superior cycling stability with almost no capacitance loss after 5000 cycles at 5 A/g.This study provides a scalable protocol for the facile fabrication of high-performance co-doped graphene as an electrode material candidate for supercapacitors.展开更多
The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy ...The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy test,optical microscope,electron backscatter diffraction and scanning transmission electron microscope.With the decrease of cooling rate from 1700℃/s to 4℃/s,exfoliation corrosion resistance of the aged specimens decreases with rating changing from EA to EC and the maximum corrosion depth increasing from about 169.4μm to 632.1μm.Exfoliation corrosion tends to develop along grain boundaries in the specimens with cooling rates higher than about 31℃/s and along both grain boundaries and sub-grain boundaries in the specimens with lower cooling rates.The reason has been discussed based on the changes of the microstructure and microchemistry at grain boundaries and sub-grain boundaries due to slow cooling.展开更多
As one promising carbon-based material,sp^(3)-hybrid carbon nitride has been predicted with various novel physicochemical properties.However,the synthesis of sp^(3)-hybrid carbon nitride is still limited by the nanaos...As one promising carbon-based material,sp^(3)-hybrid carbon nitride has been predicted with various novel physicochemical properties.However,the synthesis of sp^(3)-hybrid carbon nitride is still limited by the nanaoscale,low crystallinity,complex source,and expensive instruments.Herein,we have presented a facile approach to the sp^(3)-hybrid carbon nitride nano/micro-crystals with microwave-assisted confining growth and liquid exfoliation.Actually,the carbon nitride nano/micro-crystals can spontaneously emerge and grow in the microwave-assisted polymerization of citric acid and urea,and the liquid exfoliation can break the bulk disorder polymer to retrieve the highly crystalline carbon nitride nano/micro-crystals.The obtained carbon nitride nano/micro-crystals present superior blue light absorption strength and surprising photoluminescence quantum yields of 57.96% in ethanol and 18.05%in solid state.The experimental characterizations and density functional theory calculations reveal that the interface-trapped localized exciton may contribute to the excellent intrinsic light emission capability of carbon nitride nano/micro-crystals and the interparticle staggered stacking will prevent the aggregation-caused-quenching partially.Finally,the carbon nitride nano/micro-crystals are demonstrated to be potentially useful as the phosphor medium in light-emitting-diode for interrupting blue light-induced eye damage.This work paves new light on the synthesis strategy of sp^(3)-hybrid carbon nitride materials and thus may push forward the development of multiple carbon nitride research.展开更多
Influence of dual retrogression and re-aging(dual-RRA) temper on microstructure,strength and exfoliation corrosion(EC) behavior of Al-Zn-Mg-Cu alloy was investigated by hardness measurements,tensile properties tes...Influence of dual retrogression and re-aging(dual-RRA) temper on microstructure,strength and exfoliation corrosion(EC) behavior of Al-Zn-Mg-Cu alloy was investigated by hardness measurements,tensile properties tests,exfoliation corrosion tests,transmission electron microscopy(TEM) and scanning electron microscopy(SEM) observation combined energy dispersive X-ray detector(EDX) analysis.Dual-RRA temper maintains the matrix precipitates(MPs) similar to RRA temper,meanwhile obtains coarser and sparser grain boundary precipitates(GBPs) as well as higher Cu and lower Zn content compared with T76 temper.Therefore,dual-RRA temper not only keeps strength equivalent to the RRA temper but also obtains higher EC resistance than T76 temper.展开更多
The exfoliation corrosion (EFC) behavior of 7050-T6 aluminum alloy treated with various quench transfer time after solution heat treatment was investigated by standard EFC immersion tests, strength loss measurements...The exfoliation corrosion (EFC) behavior of 7050-T6 aluminum alloy treated with various quench transfer time after solution heat treatment was investigated by standard EFC immersion tests, strength loss measurements after EFC tests and electrochemical impedance spectroscope (EIS) technique. The results showed that EFC resistance of the alloy decreased with increasing quench transfer time. Backscattered electron scanning electron microscope (SEM) together with transmission electron microscope (TEM) observations revealed that the coverage ratio and microstructure of precipitates at grain boundary area are the most important factors which influence the EFC susceptibility of the alloy, while precipitate-free zone (PFZ) near grain boundary has no or only a minor effect on it. In addition, galvanostatic measurements of the alloy present a good correlation between EFC resistance and transients in potential. The cumulated number of transients in potential can be used to evaluate EFC resistance of the alloy.展开更多
With the discovery of graphene,black phosphorus(BP)has been rediscovered as a two-dimensional(2 D)layered material.Since its first preparation in 2014,2 D BP has elicited immense interest,and has exhibited excellent p...With the discovery of graphene,black phosphorus(BP)has been rediscovered as a two-dimensional(2 D)layered material.Since its first preparation in 2014,2 D BP has elicited immense interest,and has exhibited excellent properties,such as distinct pleated structures in layers,adjustable direct bandgap,high carrier mobility,moderate on/off ratio,large specific surface area,and various interesting in-layer anisotropies.However,the realization of these excellent properties depends on the preparation of highquality 2 D BP sheets.Electrochemical exfoliation methods are typically performed under mild conditions,thus,these methods are convenient,controllable,and can produce high-quality 2 D BP sheets.This review summarizes research progress in BP sheets preparation through anodic,cathodic,and electrolyte exfoliation in recent years.Different exfoliating methods affect the quality of 2 D BP sheets.Moreover,possible exfoliating mechanisms and the potential applications of different exfoliating methods are summarized and discussed in detail.Lastly,the shortcomings of existing research on electrochemical exfoliation are presented,and suggestions and prospects for future research on the electrochemical exfoliation of 2 D BP are proposed.展开更多
Graphene nanosheets(GSs) were prepared from graphite oxide by thermal exfoliation method. The effect of thermal exfoliation temperature on the structure and supercapacitive performance of GSs has been investigated. Th...Graphene nanosheets(GSs) were prepared from graphite oxide by thermal exfoliation method. The effect of thermal exfoliation temperature on the structure and supercapacitive performance of GSs has been investigated. The results show that the GSs with pore sizes center around 4.0 nm. With an increase of thermal reduction temperature, the number of stacking layers and the structure disorder degree increase, while the oxygen-containing groups content, BET surface area,and electrical resistivity of GSs decrease. The results indicate that 673 K is the preferable thermal exfoliation temperature to acquire good supercapacitive performance. In this case, the GSs have the best supercapacitive performance(233.1 F g-1) in a 6 mol L-1KOH electrolyte. The prepared GSs at the preferable thermal exfoliation temperature have good rate performance and cycle stability.展开更多
Electrochemistry has emerged as a major route for graphene and graphene oxide synthesis from graphite.Anodic graphite oxidation is commonly used with dilute mineral acid or aqueous salt electrolytes.In this system,the...Electrochemistry has emerged as a major route for graphene and graphene oxide synthesis from graphite.Anodic graphite oxidation is commonly used with dilute mineral acid or aqueous salt electrolytes.In this system,the electrolyte acid concentration appears to be a critical parameter.However,the effect of the acid concentration,particularly at low concentrations,is still not fully understood.To address this issue,we used a packed bed electrochemical reactor to synthesize seven different electrochemical graphite oxide(EGO)products in 2–16M sulfuric acid.Detailed XRD,XPS,Raman,conductivity and optical microscopy analysis of the products was carried out.We found dilute acid(<10 M)graphite oxides were less crystalline and less oxidized than those produced in stronger acids.The oxygen evolution reaction at the graphite surface appears to affect the structural changes,oxidation mechanism,and electrochemical corrosion of the anode.EGO conductivity is also strongly affected by the electrolyte’s acidity.We show that well oxidized,yet reasonably conductive,single layer graphene oxide can be produced from 7.1M acid.These results broaden our understanding of graphite electrochemistry and will serve to inform future electrochemical graphene synthesis efforts.展开更多
Spent cathode carbon(SCC)from aluminum electrolysis is a potential graphite resource.However,full use of the SCC remains a challenge,since it contains many hazardous substances(e.g.,fluoride salts,cyanides),encapsulat...Spent cathode carbon(SCC)from aluminum electrolysis is a potential graphite resource.However,full use of the SCC remains a challenge,since it contains many hazardous substances(e.g.,fluoride salts,cyanides),encapsulated within the thick carbon layers and thus posing serious environmental concerns.This work presents a chemical oxidative exfoliation route to achieve the recycling of SCC and the decontaminated SCC with high-valued graphene oxide(GO)-like carbon structures(SCC-GO)is applied as an excellent adsorbent for organic pollutants.Specifically,after the oxidative exfoliation,the embedded hazardous constituents are fully exposed,facilitating their subsequent removal by aqueous leaching.Moreover,benefiting from the enhanced specific surface areas along with abundant O-containing functional groups,the as-produced SCC-GO,shows an adsorption capacity as high as 347 mg·g^(-1)when considering methylene blue as a pollutant model,which exceeds most of the recently reported carbon-based adsorbents.Our study provides a feasible solution for the efficient recycling of hazardous carbonaceous wastes.展开更多
To quest for the best combination of mechanical properties and exfoliation corrosion resisting property of Al-Mg-Mn base alloys, and to seek after the effect of Sc and Zr on mechanical and exfoliation corrosion proper...To quest for the best combination of mechanical properties and exfoliation corrosion resisting property of Al-Mg-Mn base alloys, and to seek after the effect of Sc and Zr on mechanical and exfoliation corrosion properties of Al-Mg-Mn alloys, comparative research technique was used, the mechanical properties of Al-Mg-Mn alloys with and without minor Sc and Zr treated by different annealing were measured, the degrees of exfoliation corrosion for these alloys through accelerated exfoliation corrosion test were evaluated, and polarization curves of these alloys were measured, too. The micro-morphologies of corrosion specimens were observed by SEM and the corrosion product was analyzed using EDS. Optical microscope and TEM were used, the relationship between their microstruc-tures and mechanical properties, exfoliation corrosion resisting property was investigated, and the results show that the addition of minor Sc and Zr can enhance the strength greatly and also improve the combination of strength and plasticity. Moreover, the addition of minor Sc, Zr does not cause appreciable decrease of exfoliation corrosion resisting property, the Al-Mg-Mn-Sc-Zr alloy annealed at 350 ℃ for 1 h has excellent combination of mechanical properties and exfoliation corrosion resisting property, the satisfied combination of mechanical properties nad exfoliation corrosion resisting property can be obtained by means of adding minor Sc and Zr, decreasing the content of Mn, and adopting reasonable annealing practice.展开更多
Synthesis of structurally controlled graphene materials is critical for realizing their practical applications.The electrochemical exfoliation of graphite has emerged as a simple method to produce graphene materials.T...Synthesis of structurally controlled graphene materials is critical for realizing their practical applications.The electrochemical exfoliation of graphite has emerged as a simple method to produce graphene materials.This review examines research progress in the last 5 years,from 2015 to 2019.Graphene material synthesis methods generally have a trade‐off between increasing production yield and achieving better material property control.The synthesis conditions for synthesizing pristine graphene,graphene oxide(GO),and graphene composites are significantly different.Thus,in this review,we first discuss synthesis methods for graphene materials with high C/O ratios from four aspects:graphite electrodes,equipment engineering,electrolytes,and additional reduction methods.Next,we survey synthesis methods for GO and examine how the pretreatment of the graphite electrodes,electrolytes,and operation parameters,such as applied voltages,electrolyte temperatures,and mechanical forces,affect the quality of GO.Further,we summarize electrochemical exfoliation methods used to dope graphene materials,introduce covalent functional groups,incorporate various nanoparticles,and assembly of graphene architectures.For all synthesis methods,we compare the properties of resulting graphene materials such as C/O ratios,lateral size,layer numbers,and quality characterized by Raman spectroscopy.Lastly,we propose our perspectives on further research.We hope this review stimulates more studies to realize the on‐demand production of graphene materials with desired properties using electrochemical exfoliation methods.展开更多
Flexible yet highly thermoconductive materials are essential for the development of next-generation flexible electronic devices.Herein,we report a bioinspired nanostructured film with the integration of large ductilit...Flexible yet highly thermoconductive materials are essential for the development of next-generation flexible electronic devices.Herein,we report a bioinspired nanostructured film with the integration of large ductility and high thermal conductivity based on self-exfoliated pristine graphene and three-dimensional aramid nanofiber network.A self-grinding strategy to directly exfoliate flake graphite into few-layer and few-defect pristine graphene is successfully developed through mutual shear friction between graphite particles,generating largely enhanced yield and productivity in comparison to normal liquid-based exfoliation strategies,such as ultrasonication,high-shear mixing and ball milling.Inspired by nacre,a new bioinspired layered structural design model containing three-dimensional nanofiber network is proposed and implemented with an interconnected aramid nanofiber network and high-loading graphene nanosheets by a developed continuous assembly strategy of sol-gel-film transformation.It is revealed that the bioinspired film not only exhibits nacre-like ductile deformation behavior by releasing the hidden length of curved aramid nanofibers,but also possesses good thermal transport ability by directionally conducting heat along pristine graphene nanosheets.展开更多
The influence of exfoliation corrosion on the tensile properties of a high strength Al-Zn-Mg-Cu alloy was investigated by ambient temperature tensile testing, optical microscopy, transmission electron microscopy (TEM...The influence of exfoliation corrosion on the tensile properties of a high strength Al-Zn-Mg-Cu alloy was investigated by ambient temperature tensile testing, optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). After exfoliation corrosion immersion, blisters and corrosion pits can be seen on the sheet surface, which lead to loss of materials and notches. A number of intergranular cracks are observed to initiate at the bottom of the corrosion-induced notches and propagate rapidly into the bulk materials during tensile. Consequently, exfoliation corrosion results in significant loss of strength and brittle fracture. EBSD results show that the crack propagation path is primarily along the grain boundaries with misorientation of-45°, and coincidence site lattice (CSL) boundaries are slightly more resistant to crack.展开更多
By means of TEM, hardness, conductivity, tensile strength test, fracture toughness test, polarization curve and EIS, the Al-Zn-Mg-Cu alloys treated by a new multi-stage aging system, i.e. pre-aging, over-aging and re-...By means of TEM, hardness, conductivity, tensile strength test, fracture toughness test, polarization curve and EIS, the Al-Zn-Mg-Cu alloys treated by a new multi-stage aging system, i.e. pre-aging, over-aging and re-aging (120°C/24h + 160°C/8h + 120°C/24h), were characterized. It is found that compared with the Al-Zn-Mg-Cu alloys treated by T76 (120°C/24h + 160°C/8h), the new multi-stage aging treatment can improve the tensile strength, fracture toughness, hardness and conductivity of the alloys at the same time. This is mainly due to the pre-aging, over-aging and re-aging process of super high strength aluminum alloys. Compared with the two-stage over aging process, the formation of multi-stage multi-phase precipitation structure can improve the strength, toughness and corrosion resistance of the alloys at the same time. The polarization curve is consistent with the conclusion. Therefore, we conducted this study to test how the comprehensive properties of the alloy can be improved.展开更多
Stanene(Sn)-based materials have been extensively applied in industrial production and daily life,but their potential biomedical application remains largely unexplored,which is due to the absence of the appropriate an...Stanene(Sn)-based materials have been extensively applied in industrial production and daily life,but their potential biomedical application remains largely unexplored,which is due to the absence of the appropriate and effective methods for fabricating Sn-based biomaterials.Herein,we explored a new approach combining cryogenic exfoliation and liquid-phase exfoliation to successfully manufacture two-dimensional(2D)Sn nanosheets(SnNSs).The obtained SnNSs exhibited a typical sheet-like structure with an average size of~100 nm and a thickness of~5.1 nm.After PEGylation,the resulting PEGylated SnNSs(SnNSs@PEG)exhibited good stability,superior biocompatibility,and excellent photothermal performance,which could serve as robust photothermal agents for multi-modal imaging(fluorescence/photoacoustic/photothermal imaging)-guided photothermal elimination of cancer.Furthermore,we also used first-principles density functional theory calculations to investigate the photothermal mechanism of SnNSs,revealing that the free electrons in upper and lower layers of SnNSs contribute to the conversion of the photo to thermal.This work not only introduces a new approach to fabricate 2D SnNSs but also establishes the SnNSs-based nanomedicines for photonic cancer theranostics.This new type of SnNSs with great potential in the field of nanomedicines may spur a wave of developing Sn-based biological materials to benefit biomedical applications.展开更多
The exfoliation corrosion behavior of a novel Al-Li alloy treated by T6- and T8-peak ageing was studied by electrochemical impedance spectroscopy(EIS) technique. The surface morphology of corroded samples was examined...The exfoliation corrosion behavior of a novel Al-Li alloy treated by T6- and T8-peak ageing was studied by electrochemical impedance spectroscopy(EIS) technique. The surface morphology of corroded samples was examined by scanning electron microscope(SEM). The microstructure of un-corroded samples was observed by transmission electron microscope(TEM). At early stage of immersion in EXCO, EIS plots of the two differently processed samples are composed of a capacitive arc in the high frequency range and an inductive loop in the low frequency range. Inductive loop disappears with the increasing of immersion time and two capacitive arcs appear. T6-treated alloy has higher exfoliation susceptibility than T8-treated one, suggested by different exfoliation starting time, which is 23 h and 27 h respectively. T1 phase and equilibrium precipitate at the grain boundary of T6-treated alloy are larger in amount and size than those of T8-treated alloy. This is the main reason for the higher exfoliation susceptibility of T6-treated alloy.展开更多
The exfoliation corrosion susceptibility and electrochemical impedance spectrosc opy(EIS) of rolled and peak-aged 8090 Al-Li alloys in EXCO solution were studi ed,and the EIS after exfoliation was simulated. Once exfo...The exfoliation corrosion susceptibility and electrochemical impedance spectrosc opy(EIS) of rolled and peak-aged 8090 Al-Li alloys in EXCO solution were studi ed,and the EIS after exfoliation was simulated. Once exfoliation occurs,two ca pacitive arcs appear in the EIS at high-mediate frequency and mediate-low freq uency respectively. The exfoliation-attacked alloy surface consists of two part s,an original flat alloy surface and a new inter-face exposed to EXCO solution due to the exfoliation. The capacitance corresponding to the new exfoliation in ter-face increases approximately linearly with time at early exfoliation stage,due to the enlargement of the new inter-face. Then it maintains stable,due to the corrosion product covering on the new inter-face. The exfoliation suscepti bility can be judged through the average slope of the capacitance vs time curve of the early exfoliation stage. This average slope of the rolled 8090 alloy is m uch higher than that of the peak-aged 8090 alloy,accordingly the rolled 8090 a lloy is more susceptible to exfoliation than the peak-aged 8090 alloy.展开更多
The exfoliation morphologies and electrochemical impedance spectroscopy (EIS) features of as received rolled AA8090 Al Li alloy in EXCO solution were studied. The EIS was simulated using an equivalent circuit. The res...The exfoliation morphologies and electrochemical impedance spectroscopy (EIS) features of as received rolled AA8090 Al Li alloy in EXCO solution were studied. The EIS was simulated using an equivalent circuit. The results show that once the exfoliation occurs, the EIS is composed of two capacitive arcs at high frequency and mediate low frequency; among them, the capacitance corresponding to high frequency ( C 1) is originated from original flat alloy surface, while the capacitance corresponding to mediate low frequency ( C 2) from new interface exposed to EXCO solution due to the exfoliation and the ratio of C 2 to C 1 increases with exfoliation degree. It is advanced that the exfoliation degree can be quantitatively judged through this ratio.展开更多
High-quality graphene flakes have long been desirable for numerous applications including energy stor- age, printable electronics, and catalysis. In this contribution, we report a green, efficient, facile gas-driven e...High-quality graphene flakes have long been desirable for numerous applications including energy stor- age, printable electronics, and catalysis. In this contribution, we report a green, efficient, facile gas-driven exfoliation process for the preparation of high-quality graphene in large scale. The gas exfoliation process was realized by the interplay between the expansion of interlayer at high temperature and the gasifi- cation of liquid nitrogen within the interlayer. Detailed experiments demonstrated that the higher tem- perature was critical to the formation of fewer layers. The exfoliated graphene was proved to be of high quality. We further investigated the electrochemical behavior of this exfoliated graphene. As a result, this few-layered graphene demonstrated an enhanced capability as a supercapacitor, much higher than its counterpart parent material.展开更多
基金supported by National Science Foundation of China(No.52201254)Natural Science Foundation of Shandong Province(Nos.ZR2020MB090,ZR2020MB027,and ZR2020QE012)+1 种基金the project of“20 Items of University”of Jinan(No.202228046)the Taishan Scholar Project of Shandong Province(No.tsqn202306226)。
文摘The stacking and aggregation of graphene nanosheets have been obstacles to their application as electrode materials for microelectronic devices.This study deploys a one-step,scalable,facile electrochemical exfoliation technique to fabricate nitrogen(N)and chlorine(Cl)co-doped graphene nanosheets(i.e.,N-Cl-G)via the application of constant voltage on graphite in a mixture of 0.1 mol/L H_(2)SO_(4)and 0.1 mol/L NH_(4)Cl without using dangerous and exhaustive operation.The introduction of Cl(with its large radius)and N,both with high electrical negativity,facilitates the modulation of the electronic structure of graphene and creation of rich structural defects in it.Consequently,in the as-constructed supercapacitors,N-Cl-G exhibits a high specific capacitance of 77 F/g at 0.2 A/g and remarkable cycling stability with 91.7%retention of initial capacitance after 20,000 cycles at 10 A/g.Furthermore,a symmetrical supercapacitor assembled with N-Cl-G as the positive and negative electrodes(denoted as N-Cl-G//N-Cl-G)exhibits an energy density of 3.38 Wh/kg at a power density of 600 W/kg and superior cycling stability with almost no capacitance loss after 5000 cycles at 5 A/g.This study provides a scalable protocol for the facile fabrication of high-performance co-doped graphene as an electrode material candidate for supercapacitors.
基金Project(202302AB080024)supported by the Major Science and Technology Projects of the Science and Technology Department of Yunnan Province,ChinaProject(U21A20130)supported by the National Natural Science Foundation of China。
文摘The impact of cooling rate after solution heat treatment on exfoliation corrosion resistance of a Li-containing 7xxx aluminum alloy was investigated by accelerated immersion and electrochemical impedance spectroscopy test,optical microscope,electron backscatter diffraction and scanning transmission electron microscope.With the decrease of cooling rate from 1700℃/s to 4℃/s,exfoliation corrosion resistance of the aged specimens decreases with rating changing from EA to EC and the maximum corrosion depth increasing from about 169.4μm to 632.1μm.Exfoliation corrosion tends to develop along grain boundaries in the specimens with cooling rates higher than about 31℃/s and along both grain boundaries and sub-grain boundaries in the specimens with lower cooling rates.The reason has been discussed based on the changes of the microstructure and microchemistry at grain boundaries and sub-grain boundaries due to slow cooling.
基金the National Natural Science Foundation of China(12074348,12261141661,62204223,52072345,and 12174348)the China Postdoctoral Science Foundation(2022TQ0307)the Natural Science Foundation of Henan Province(242300421179 and 222102310664).
文摘As one promising carbon-based material,sp^(3)-hybrid carbon nitride has been predicted with various novel physicochemical properties.However,the synthesis of sp^(3)-hybrid carbon nitride is still limited by the nanaoscale,low crystallinity,complex source,and expensive instruments.Herein,we have presented a facile approach to the sp^(3)-hybrid carbon nitride nano/micro-crystals with microwave-assisted confining growth and liquid exfoliation.Actually,the carbon nitride nano/micro-crystals can spontaneously emerge and grow in the microwave-assisted polymerization of citric acid and urea,and the liquid exfoliation can break the bulk disorder polymer to retrieve the highly crystalline carbon nitride nano/micro-crystals.The obtained carbon nitride nano/micro-crystals present superior blue light absorption strength and surprising photoluminescence quantum yields of 57.96% in ethanol and 18.05%in solid state.The experimental characterizations and density functional theory calculations reveal that the interface-trapped localized exciton may contribute to the excellent intrinsic light emission capability of carbon nitride nano/micro-crystals and the interparticle staggered stacking will prevent the aggregation-caused-quenching partially.Finally,the carbon nitride nano/micro-crystals are demonstrated to be potentially useful as the phosphor medium in light-emitting-diode for interrupting blue light-induced eye damage.This work paves new light on the synthesis strategy of sp^(3)-hybrid carbon nitride materials and thus may push forward the development of multiple carbon nitride research.
基金Projects (2010CB731701,2012CB619502) supported by the National Basic Research Program of ChinaProject (50721003) supported by the Creative Research Group of National Natural Science Foundation of China
文摘Influence of dual retrogression and re-aging(dual-RRA) temper on microstructure,strength and exfoliation corrosion(EC) behavior of Al-Zn-Mg-Cu alloy was investigated by hardness measurements,tensile properties tests,exfoliation corrosion tests,transmission electron microscopy(TEM) and scanning electron microscopy(SEM) observation combined energy dispersive X-ray detector(EDX) analysis.Dual-RRA temper maintains the matrix precipitates(MPs) similar to RRA temper,meanwhile obtains coarser and sparser grain boundary precipitates(GBPs) as well as higher Cu and lower Zn content compared with T76 temper.Therefore,dual-RRA temper not only keeps strength equivalent to the RRA temper but also obtains higher EC resistance than T76 temper.
基金Project(2012CB619502)supported by the National Basic Research Program of China
文摘The exfoliation corrosion (EFC) behavior of 7050-T6 aluminum alloy treated with various quench transfer time after solution heat treatment was investigated by standard EFC immersion tests, strength loss measurements after EFC tests and electrochemical impedance spectroscope (EIS) technique. The results showed that EFC resistance of the alloy decreased with increasing quench transfer time. Backscattered electron scanning electron microscope (SEM) together with transmission electron microscope (TEM) observations revealed that the coverage ratio and microstructure of precipitates at grain boundary area are the most important factors which influence the EFC susceptibility of the alloy, while precipitate-free zone (PFZ) near grain boundary has no or only a minor effect on it. In addition, galvanostatic measurements of the alloy present a good correlation between EFC resistance and transients in potential. The cumulated number of transients in potential can be used to evaluate EFC resistance of the alloy.
基金financially supported by the Youth talent support program of science and technology association of colleges of Shaanxi Province(Grant No.20190609)the Special scientific research plan of education department of Shaanxi province(Grant No.19JK0190 and 19JK0186)+3 种基金the Natural Science Foundation of Shaanxi Province(Grant No.2019JM508)the Open project of Key laboratory of catalytic foundation and application of Shaanxi province(Grant No.SLGPT2019KF01-23)the Opening Foundation of Shaanxi Key Laboratory of Industrial Automation(No.SLGPT2019KF01-10)the School-level project of Shaanxi University of Technology(Grant No.SLGRC03,SLGRC02)。
文摘With the discovery of graphene,black phosphorus(BP)has been rediscovered as a two-dimensional(2 D)layered material.Since its first preparation in 2014,2 D BP has elicited immense interest,and has exhibited excellent properties,such as distinct pleated structures in layers,adjustable direct bandgap,high carrier mobility,moderate on/off ratio,large specific surface area,and various interesting in-layer anisotropies.However,the realization of these excellent properties depends on the preparation of highquality 2 D BP sheets.Electrochemical exfoliation methods are typically performed under mild conditions,thus,these methods are convenient,controllable,and can produce high-quality 2 D BP sheets.This review summarizes research progress in BP sheets preparation through anodic,cathodic,and electrolyte exfoliation in recent years.Different exfoliating methods affect the quality of 2 D BP sheets.Moreover,possible exfoliating mechanisms and the potential applications of different exfoliating methods are summarized and discussed in detail.Lastly,the shortcomings of existing research on electrochemical exfoliation are presented,and suggestions and prospects for future research on the electrochemical exfoliation of 2 D BP are proposed.
基金supported by the National Natural Science Foundation of China (Grant No. 41272051)the Doctor Foundation of Southwest University of Science and Technology (Grant No. 11ZX7135)
文摘Graphene nanosheets(GSs) were prepared from graphite oxide by thermal exfoliation method. The effect of thermal exfoliation temperature on the structure and supercapacitive performance of GSs has been investigated. The results show that the GSs with pore sizes center around 4.0 nm. With an increase of thermal reduction temperature, the number of stacking layers and the structure disorder degree increase, while the oxygen-containing groups content, BET surface area,and electrical resistivity of GSs decrease. The results indicate that 673 K is the preferable thermal exfoliation temperature to acquire good supercapacitive performance. In this case, the GSs have the best supercapacitive performance(233.1 F g-1) in a 6 mol L-1KOH electrolyte. The prepared GSs at the preferable thermal exfoliation temperature have good rate performance and cycle stability.
基金support from the Australian Research Council (LP160101521 and DP190100120)
文摘Electrochemistry has emerged as a major route for graphene and graphene oxide synthesis from graphite.Anodic graphite oxidation is commonly used with dilute mineral acid or aqueous salt electrolytes.In this system,the electrolyte acid concentration appears to be a critical parameter.However,the effect of the acid concentration,particularly at low concentrations,is still not fully understood.To address this issue,we used a packed bed electrochemical reactor to synthesize seven different electrochemical graphite oxide(EGO)products in 2–16M sulfuric acid.Detailed XRD,XPS,Raman,conductivity and optical microscopy analysis of the products was carried out.We found dilute acid(<10 M)graphite oxides were less crystalline and less oxidized than those produced in stronger acids.The oxygen evolution reaction at the graphite surface appears to affect the structural changes,oxidation mechanism,and electrochemical corrosion of the anode.EGO conductivity is also strongly affected by the electrolyte’s acidity.We show that well oxidized,yet reasonably conductive,single layer graphene oxide can be produced from 7.1M acid.These results broaden our understanding of graphite electrochemistry and will serve to inform future electrochemical graphene synthesis efforts.
基金supported by the National Natural Science Foundation of China(22008221)Startup Research Fund of Zhengzhou University(32211716)+3 种基金Key Scientific Research Projects of Colleges and Universities in Henan Province(21A530005)Guangdong Basic and Applied Basic Research Foundation(2021A1515110789)Hunan Provincial Natural Science Foundation of China(2022JJ40431)Zhengzhou Collaborative Innovation Major Project。
文摘Spent cathode carbon(SCC)from aluminum electrolysis is a potential graphite resource.However,full use of the SCC remains a challenge,since it contains many hazardous substances(e.g.,fluoride salts,cyanides),encapsulated within the thick carbon layers and thus posing serious environmental concerns.This work presents a chemical oxidative exfoliation route to achieve the recycling of SCC and the decontaminated SCC with high-valued graphene oxide(GO)-like carbon structures(SCC-GO)is applied as an excellent adsorbent for organic pollutants.Specifically,after the oxidative exfoliation,the embedded hazardous constituents are fully exposed,facilitating their subsequent removal by aqueous leaching.Moreover,benefiting from the enhanced specific surface areas along with abundant O-containing functional groups,the as-produced SCC-GO,shows an adsorption capacity as high as 347 mg·g^(-1)when considering methylene blue as a pollutant model,which exceeds most of the recently reported carbon-based adsorbents.Our study provides a feasible solution for the efficient recycling of hazardous carbonaceous wastes.
文摘To quest for the best combination of mechanical properties and exfoliation corrosion resisting property of Al-Mg-Mn base alloys, and to seek after the effect of Sc and Zr on mechanical and exfoliation corrosion properties of Al-Mg-Mn alloys, comparative research technique was used, the mechanical properties of Al-Mg-Mn alloys with and without minor Sc and Zr treated by different annealing were measured, the degrees of exfoliation corrosion for these alloys through accelerated exfoliation corrosion test were evaluated, and polarization curves of these alloys were measured, too. The micro-morphologies of corrosion specimens were observed by SEM and the corrosion product was analyzed using EDS. Optical microscope and TEM were used, the relationship between their microstruc-tures and mechanical properties, exfoliation corrosion resisting property was investigated, and the results show that the addition of minor Sc and Zr can enhance the strength greatly and also improve the combination of strength and plasticity. Moreover, the addition of minor Sc, Zr does not cause appreciable decrease of exfoliation corrosion resisting property, the Al-Mg-Mn-Sc-Zr alloy annealed at 350 ℃ for 1 h has excellent combination of mechanical properties and exfoliation corrosion resisting property, the satisfied combination of mechanical properties nad exfoliation corrosion resisting property can be obtained by means of adding minor Sc and Zr, decreasing the content of Mn, and adopting reasonable annealing practice.
基金National Natural Science Foundation of China,Grant/Award Numbers:51678163,91851202Australian Research Council,Grant/Award Number:FT160100107 and DP180102210。
文摘Synthesis of structurally controlled graphene materials is critical for realizing their practical applications.The electrochemical exfoliation of graphite has emerged as a simple method to produce graphene materials.This review examines research progress in the last 5 years,from 2015 to 2019.Graphene material synthesis methods generally have a trade‐off between increasing production yield and achieving better material property control.The synthesis conditions for synthesizing pristine graphene,graphene oxide(GO),and graphene composites are significantly different.Thus,in this review,we first discuss synthesis methods for graphene materials with high C/O ratios from four aspects:graphite electrodes,equipment engineering,electrolytes,and additional reduction methods.Next,we survey synthesis methods for GO and examine how the pretreatment of the graphite electrodes,electrolytes,and operation parameters,such as applied voltages,electrolyte temperatures,and mechanical forces,affect the quality of GO.Further,we summarize electrochemical exfoliation methods used to dope graphene materials,introduce covalent functional groups,incorporate various nanoparticles,and assembly of graphene architectures.For all synthesis methods,we compare the properties of resulting graphene materials such as C/O ratios,lateral size,layer numbers,and quality characterized by Raman spectroscopy.Lastly,we propose our perspectives on further research.We hope this review stimulates more studies to realize the on‐demand production of graphene materials with desired properties using electrochemical exfoliation methods.
基金support from the National Natural Science Foundation of China(51973054)Young Talents Program in Hunan Province(2020RC3024)+2 种基金Natural Science Funds of Hunan Province for Distinguished Young Scholar(2021JJ10018)Science Research Project of Hunan Provincial Education Department(21B0027)High-level Innovative Talent Project in Hunan Province(2018RS3055).
文摘Flexible yet highly thermoconductive materials are essential for the development of next-generation flexible electronic devices.Herein,we report a bioinspired nanostructured film with the integration of large ductility and high thermal conductivity based on self-exfoliated pristine graphene and three-dimensional aramid nanofiber network.A self-grinding strategy to directly exfoliate flake graphite into few-layer and few-defect pristine graphene is successfully developed through mutual shear friction between graphite particles,generating largely enhanced yield and productivity in comparison to normal liquid-based exfoliation strategies,such as ultrasonication,high-shear mixing and ball milling.Inspired by nacre,a new bioinspired layered structural design model containing three-dimensional nanofiber network is proposed and implemented with an interconnected aramid nanofiber network and high-loading graphene nanosheets by a developed continuous assembly strategy of sol-gel-film transformation.It is revealed that the bioinspired film not only exhibits nacre-like ductile deformation behavior by releasing the hidden length of curved aramid nanofibers,but also possesses good thermal transport ability by directionally conducting heat along pristine graphene nanosheets.
基金Project(2012CB619500) supported by the National Basic Research Program of ChinaProject(201012200238) supported from the Freedom Explore Program of Central South University, China
文摘The influence of exfoliation corrosion on the tensile properties of a high strength Al-Zn-Mg-Cu alloy was investigated by ambient temperature tensile testing, optical microscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). After exfoliation corrosion immersion, blisters and corrosion pits can be seen on the sheet surface, which lead to loss of materials and notches. A number of intergranular cracks are observed to initiate at the bottom of the corrosion-induced notches and propagate rapidly into the bulk materials during tensile. Consequently, exfoliation corrosion results in significant loss of strength and brittle fracture. EBSD results show that the crack propagation path is primarily along the grain boundaries with misorientation of-45°, and coincidence site lattice (CSL) boundaries are slightly more resistant to crack.
文摘By means of TEM, hardness, conductivity, tensile strength test, fracture toughness test, polarization curve and EIS, the Al-Zn-Mg-Cu alloys treated by a new multi-stage aging system, i.e. pre-aging, over-aging and re-aging (120°C/24h + 160°C/8h + 120°C/24h), were characterized. It is found that compared with the Al-Zn-Mg-Cu alloys treated by T76 (120°C/24h + 160°C/8h), the new multi-stage aging treatment can improve the tensile strength, fracture toughness, hardness and conductivity of the alloys at the same time. This is mainly due to the pre-aging, over-aging and re-aging process of super high strength aluminum alloys. Compared with the two-stage over aging process, the formation of multi-stage multi-phase precipitation structure can improve the strength, toughness and corrosion resistance of the alloys at the same time. The polarization curve is consistent with the conclusion. Therefore, we conducted this study to test how the comprehensive properties of the alloy can be improved.
基金the US METAvivor Early Career Investigator Award(W.T.)and Harvard Medical School/Brigham and Women’s Hospital Department of Anesthesiology-Basic Scientist Grant(W.T.)National Natural Science Foundation of China(Nos.21877049,21807117)+2 种基金Major Program for Tackling Key Problems of Industrial Technology in Guangzhou(201902020013)Dedicated Fund for Promoting High-Quality Marine Economic Development in Guangdong Province(GDOE-2019-A31,2020-035)Dr J.Ouyang was supported by the China Postdoctoral Science Foundation(No.2020M683173).
文摘Stanene(Sn)-based materials have been extensively applied in industrial production and daily life,but their potential biomedical application remains largely unexplored,which is due to the absence of the appropriate and effective methods for fabricating Sn-based biomaterials.Herein,we explored a new approach combining cryogenic exfoliation and liquid-phase exfoliation to successfully manufacture two-dimensional(2D)Sn nanosheets(SnNSs).The obtained SnNSs exhibited a typical sheet-like structure with an average size of~100 nm and a thickness of~5.1 nm.After PEGylation,the resulting PEGylated SnNSs(SnNSs@PEG)exhibited good stability,superior biocompatibility,and excellent photothermal performance,which could serve as robust photothermal agents for multi-modal imaging(fluorescence/photoacoustic/photothermal imaging)-guided photothermal elimination of cancer.Furthermore,we also used first-principles density functional theory calculations to investigate the photothermal mechanism of SnNSs,revealing that the free electrons in upper and lower layers of SnNSs contribute to the conversion of the photo to thermal.This work not only introduces a new approach to fabricate 2D SnNSs but also establishes the SnNSs-based nanomedicines for photonic cancer theranostics.This new type of SnNSs with great potential in the field of nanomedicines may spur a wave of developing Sn-based biological materials to benefit biomedical applications.
文摘The exfoliation corrosion behavior of a novel Al-Li alloy treated by T6- and T8-peak ageing was studied by electrochemical impedance spectroscopy(EIS) technique. The surface morphology of corroded samples was examined by scanning electron microscope(SEM). The microstructure of un-corroded samples was observed by transmission electron microscope(TEM). At early stage of immersion in EXCO, EIS plots of the two differently processed samples are composed of a capacitive arc in the high frequency range and an inductive loop in the low frequency range. Inductive loop disappears with the increasing of immersion time and two capacitive arcs appear. T6-treated alloy has higher exfoliation susceptibility than T8-treated one, suggested by different exfoliation starting time, which is 23 h and 27 h respectively. T1 phase and equilibrium precipitate at the grain boundary of T6-treated alloy are larger in amount and size than those of T8-treated alloy. This is the main reason for the higher exfoliation susceptibility of T6-treated alloy.
文摘The exfoliation corrosion susceptibility and electrochemical impedance spectrosc opy(EIS) of rolled and peak-aged 8090 Al-Li alloys in EXCO solution were studi ed,and the EIS after exfoliation was simulated. Once exfoliation occurs,two ca pacitive arcs appear in the EIS at high-mediate frequency and mediate-low freq uency respectively. The exfoliation-attacked alloy surface consists of two part s,an original flat alloy surface and a new inter-face exposed to EXCO solution due to the exfoliation. The capacitance corresponding to the new exfoliation in ter-face increases approximately linearly with time at early exfoliation stage,due to the enlargement of the new inter-face. Then it maintains stable,due to the corrosion product covering on the new inter-face. The exfoliation suscepti bility can be judged through the average slope of the capacitance vs time curve of the early exfoliation stage. This average slope of the rolled 8090 alloy is m uch higher than that of the peak-aged 8090 alloy,accordingly the rolled 8090 a lloy is more susceptible to exfoliation than the peak-aged 8090 alloy.
文摘The exfoliation morphologies and electrochemical impedance spectroscopy (EIS) features of as received rolled AA8090 Al Li alloy in EXCO solution were studied. The EIS was simulated using an equivalent circuit. The results show that once the exfoliation occurs, the EIS is composed of two capacitive arcs at high frequency and mediate low frequency; among them, the capacitance corresponding to high frequency ( C 1) is originated from original flat alloy surface, while the capacitance corresponding to mediate low frequency ( C 2) from new interface exposed to EXCO solution due to the exfoliation and the ratio of C 2 to C 1 increases with exfoliation degree. It is advanced that the exfoliation degree can be quantitatively judged through this ratio.
基金the China National Natural Science Foundation of China (Nos. 21722604, 21576122, 21376111)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)+1 种基金a scholarship from the China Scholarship Council (CSC)the Postgraduate Innovation Project of Jiangsu Province (NO. KYLX15_1067)
文摘High-quality graphene flakes have long been desirable for numerous applications including energy stor- age, printable electronics, and catalysis. In this contribution, we report a green, efficient, facile gas-driven exfoliation process for the preparation of high-quality graphene in large scale. The gas exfoliation process was realized by the interplay between the expansion of interlayer at high temperature and the gasifi- cation of liquid nitrogen within the interlayer. Detailed experiments demonstrated that the higher tem- perature was critical to the formation of fewer layers. The exfoliated graphene was proved to be of high quality. We further investigated the electrochemical behavior of this exfoliated graphene. As a result, this few-layered graphene demonstrated an enhanced capability as a supercapacitor, much higher than its counterpart parent material.