期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Techno-economic feasibility assessment of a diesel exhaust heat recovery system to preheat mine intake air in remote cold climate regions 被引量:1
1
作者 Marco Antonio Rodrigues de Brito Durjoy Baidya Seyed Ali Ghoreishi-Madiseh 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第4期517-523,共7页
Underground mines in Arctic and Subarctic regions require the preheating of mine intake air during winter.The cold fresh air of those remote areas can be as severe as40℃ and commonly needs to be heated to around+3℃... Underground mines in Arctic and Subarctic regions require the preheating of mine intake air during winter.The cold fresh air of those remote areas can be as severe as40℃ and commonly needs to be heated to around+3℃.This extensive amount of heating is usually provided by employing large-size air heaters,fueled by diesel,propane,natural gas,or heavy oil,leading to high energy costs and large carbon footprints.At the same time,the thermal energy content of a diesel generator sets(gen-sets)exhaust is known to be one-third of the total heating value of its combusted fuel.Exhaust heat recovery from diesel gen-sets is a growing technology that seeks to mitigate the energy costs by capturing and redirecting this commonly rejected exhaust heat to other applications such as space heating or pre-heating of the mine intake air.The present study investigated the possibility of employing a simple system based on off-theshelf heat exchanger technology,which can recover the waste heat from the exhaust of the power generation units(diesel gen-sets)in an off-grid,cold,remote mine in Canada for heating of the mine intake air.Data from a real mine was used for the analysis along with environmental data of three different location-scenarios with distinct climates.After developing a thermodynamic model,the heat savings were calculated,and an economic feasibility evaluation was performed.The proposed system was found highly viable with annual savings of up to C$6.7 million and capable enough to provide an average of around 75%of the heating demand for mine intake air,leading to a payback period of about eleven months or less for all scenarios.Deployment of seasonal thermal energy storage has also been recommended to mitigate the mismatch between supply and demand,mainly in summertime,possibly allowing the system to eliminate fuel costs for intake air heating. 展开更多
关键词 exhaust heat recovery Mine energy management Mine heating Alternative energy Intake air heating
下载PDF
Simulation of Gas-Fired Triple-Effect LiBr/Water Absorption Cooling System with Exhaust Heat Recovery Generator 被引量:1
2
作者 汪磊磊 由世俊 +1 位作者 张欢 李宪莉 《Transactions of Tianjin University》 EI CAS 2010年第3期187-193,共7页
An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the no... An exhaust heat recovery generator is proposed to be integrated with conventional gas-fired triple-effect LiBr/water absorption cooling cycles to improve system energy efficiency. As a case study, simulation of the novel cycle based on promising parallel flow with cooling capacity of 1 150 kW is carried out under various heat recovery generator vapor production ratios ranging from 0 to 3.5%. The life cycle saving economic analysis, for which the annual gas conservation is estimated with Bin method, is employed to prove the worthiness of extra expenditure. Results show that the optimum gas saving revenue is obtained at 2.8% heat recovery generator vapor production ratio with 42 kW exhaust heat recovered, and the system energy efficiency is improved from 1.78 to 1.83. The initial investment of exchanger can be paid back within 7 years and 9 000 CNY of gas saving revenue will be achieved over the 15-year life cycle of the machine. This technology can be easily implemented and present desirable economic effects, which is feasible to the development of triple-effect absorption cycles. 展开更多
关键词 LiBr/water triple-effect absorption cooling cycle exhaust heat recovery
下载PDF
Experiment Study on the Exhaust-Gas Heat Exchanger for Small and Medium-Sized Marine Diesel Engine
3
作者 Li Luo Yuhang Fan +3 位作者 Yu Wang Peiyong Ni Xuewen Zhang Guannan Xi 《Energy Engineering》 EI 2023年第1期125-145,共21页
This paper aims to design a special exchanger to recover the exhaust gas heat of marine diesel engines used in small and medium-sized fishing vessels,which can then be used to heat water up to 55°C–85°C for... This paper aims to design a special exchanger to recover the exhaust gas heat of marine diesel engines used in small and medium-sized fishing vessels,which can then be used to heat water up to 55°C–85°C for membrane desalination devices to produce fresh water.A new exhaust-gas heat exchanger of fins and tube,with a reinforced heat transfer tube section,unequal spacing fins,a mixing zone between the fin groups and four routes tube bundle,was designed.Numerical simulations were also used to provide reference information for structural design.Experiments were carried out for exhaust gas waste heat recovery from a marine diesel engine in an engine test bench utilizing the heat exchanger.The experimental results show that the difference between heat absorption by water and heat reduction of exhaust gas is less than 6.5%.After the water flow rate was adjusted,the exhaust gas waste heat recovery efficiency was higher than 70%,and the exhaust-gas heat exchanger’s outlet water temperature was 55°C–85°C at different engine loads.This means that the heat recovery from the exhaust gas of a marine diesel engine meets the requirement to drive a membrane desalination device to produce fresh water for fishers working in small and medium-sized fishing vessels. 展开更多
关键词 Marine diesel engine exhaust gas waste heat recovery heat exchanger flow field simulation experimental analysis
下载PDF
Analysis of a 1 kW organic Rankine cycle using a scroll expander for engine coolant and exhaust heat recovery 被引量:11
4
作者 Yiji LU Anthony Paul ROSKILLY +2 位作者 Long JIANG Longfei CHEN Xiaoli YU 《Frontiers in Energy》 SCIE CSCD 2017年第4期527-534,共8页
The development of engine waste heat recov- ery technologies attracts ever increasing interests due to the rising strict policy requirements and environmental con- cerns. This paper presented the study of engine coola... The development of engine waste heat recov- ery technologies attracts ever increasing interests due to the rising strict policy requirements and environmental con- cerns. This paper presented the study of engine coolant and exhaust heat recovery using organic Rankine cycle (ORC). Eight working fluids were selected to evaluate and compare the performance of the integrated waste heat recovery system. Rather than the conventional engine ORC system mainly focusing on the utilization of exhaust energy, this work proposed to fully use the engine coolant energy by changing the designed parameters of the ORC system. The case study selected a small engine as the heat source to drive the ORC system using a scroll expander for power production. The evaluation results suggest that under the engine rated condition, the solution to fully recover the engine coolant energy can achieve a higher power generation performance than that of the conven- tional engine ORC system. The results suggest that adding a recuperator to the ORC system can potentially improve the system performance when the working fluids are dry and the overall dumped heat demand of the system can be reduced by 12% under optimal conditions. When the ORC evaporating and condensing temperature are respectivelyset at 85℃ and 30℃, the integrated engine waste heat recovery system can improve the overall system efficiency by 9.3% with R600, R600a or n-Pentane as the working fluid. 展开更多
关键词 organic Rankine cycle scroll expander cool-ant and exhaust recovery internal combustion engine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部