In exploring persistent infections and malignancies, a distinctive subgroup of CD8^(+) T cells, progenitor exhausted CD8^(+) T(Tpex) cells, has been identified. These Tpex cells are notable for their remarkable self-r...In exploring persistent infections and malignancies, a distinctive subgroup of CD8^(+) T cells, progenitor exhausted CD8^(+) T(Tpex) cells, has been identified. These Tpex cells are notable for their remarkable self-renewal and rapid proliferation abilities. Recent strides in immunotherapy have demonstrated that Tpex cells expand and differentiate into responsive exhausted CD8^(+) T cells, thus underscoring their critical role in the immunotherapeutic retort. Clinical examinations have further clarified a robust positive correlation between the proportional abundance of Tpex cells and enhanced clinical prognosis. Tpex cells have found noteworthy applications in the formulation of inventive immunotherapeutic approaches against tumors. This review describes the functions of Tpex cells in the tumor milieu, particularly their potential utility in tumor immunotherapy. Precisely directing Tpex cells may be essential to achieving successful outcomes in immunotherapy against tumors.展开更多
Experiments were conducted in this study to examine the thermal performance of a thermosyphon,made from Inconel alloy 625,could recover waste heat from automobile exhaust using a limited amount of fluid.The thermosyph...Experiments were conducted in this study to examine the thermal performance of a thermosyphon,made from Inconel alloy 625,could recover waste heat from automobile exhaust using a limited amount of fluid.The thermosyphon has an outer diameter of 27 mm,a thickness of 2.6 mm,and an overall length of 483 mm.The study involved directing exhaust gas onto the evaporator.This length includes a 180-mm evaporator,a 70-mm adiabatic section,a 223-mm condenser,and a 97-mm finned exchanger.The study examined the thermal performance of the thermosyphon under exhaust flow rates ranging from 0–10 g/sec and temperatures varying from 300℃–900℃.The influence of three parameters—inclination angle(5°–45°),water mass(2–5.3 g),and the quantity of non-condensable gas Argon(0–0.6 g)—was investigated to assess their impacts on the thermosyphon’s thermal efficiency.The experimental findings revealed that with 3 g of water and 0.0564 g of argon in the thermosyphon,the condenser reached its highest temperature at around 200℃.The ideal fuel loading rate for the thermosyphon falls between 0.2 and 0.7 g/s.Moreover,as inclination angles rise,outer wall temperatures of the thermosyphon increase.This is attributed to the explicit expansion of the effective heating area within the evaporation section,coupled with an amplified gravitational component of the water flux.Additionally,an upsurge in the quantity of non-condensable gas(NCG)can mitigate temperature gradients on the outer wall,resulting in a decline in the thermosyphon’s performance.The insulation applied to the adiabatic section demonstrated efficacy in augmenting temperature gradients on the outer wall,thereby improving the overall performance of the thermosyphon.As the water charge within the thermosyphon increases,there is a corresponding rise in heat transfer rates both from the exhaust to the thermosyphon and from the thermosyphon to the fuel.展开更多
Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption o...Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption of electronically controlled injection and corresponding electronic control technique is an effective measure of prolonged vitality to improve emissions from two stroke motorcycles. Suggestions about the strategic steps of China′s motorcycle emission control are proposed.展开更多
An improved near far field divided coupled method was established to investigate the electromagnetic properties of mildly overexpanded and underexpanded rocket exhaust plumes. Firstly, axisymmetric Navier Stokes eq...An improved near far field divided coupled method was established to investigate the electromagnetic properties of mildly overexpanded and underexpanded rocket exhaust plumes. Firstly, axisymmetric Navier Stokes equations incorporated with k ε two equation turbulence models were solved using time dependent approach to calculate the pressure of the near filed. Secondly, parabolized axisymmetric Navier Stokes equations incorporated with finite rate chemical kinetics models were marching on the detailed pressure map of the near field. The termination of the near field would yield the initial line for the far field. In addition, in the far field, the spatial marching method was directly used under the constant pressure condition, but considering more complicated chemically reacting process. Finally, the electromagnetic parameters of the whole plume were calculated with the electron conductive model. The calculated results of the overexpanded and underexpanded rocket exhaust plume were discussed. The predicted microwave attenuation accorded with the experimental results. This improved method is feasible for calculating the microwave attenuation characteristics of mildly non fully expanded rocket exhaust plumes.展开更多
Tourism is of vital practical significance to low-carbon economic transition of resources-exhausted cities.By taking Gejiu City of Yunnan Province for example,the paper discussed that Gejiu City as the resources-exhau...Tourism is of vital practical significance to low-carbon economic transition of resources-exhausted cities.By taking Gejiu City of Yunnan Province for example,the paper discussed that Gejiu City as the resources-exhausted city should positively develop tourism,particularly industrial heritage tourism,treating tourism development as the breakthrough and motive power of low-carbon economic transition of resources-exhausted cities,so as to walk out a unique road of tourism promoting low-carbon economic development.展开更多
Objective: To investigate the expression of myocardium connexin 43(Cx43) in late exercise preconditioning(LEP) cardioprotection. Methods: Eight-week-old adult male Sprague Dawley rats were randomly assigned into four ...Objective: To investigate the expression of myocardium connexin 43(Cx43) in late exercise preconditioning(LEP) cardioprotection. Methods: Eight-week-old adult male Sprague Dawley rats were randomly assigned into four groups(n=8). Myocardial injury was judged in accordance with serum levels of c Tn and NT-pro BNP as well as hematoxylin basicfuchsin picric acid staining of myocardium. Cx43 m RNA was detected by in situ hybridization and qualified by real-time fluorescence quantitative PCR. Cx43 protein was localized by immunohistochemistry and its expression level was determined by western blotting. Results: The LEP obviously attenuated the myocardial ischemia/hypoxia injury caused by exhaustive exercise. There was no significant difference of Cx43 m RNA level between the four groups. Cx43 protein level was decreased significantly in group EE(P<0.05). However, LEP produced a significant increase in Cx43 protein level(P<0.05), and the decreased Cx43 protein level in exhaustive exercise was significantly up-regulated by LEP(P<0.05). Conclusions: LEP protects rat heart against exhaustive exercise-induced myocardial injury by up-regulating the expression of myocardial Cx43.展开更多
A new kind of thermoelectric heat pump water heater for kitchens exhaust heat recovery was presented,and its performances were investigated under different operating voltages.The experiment results show that the coeff...A new kind of thermoelectric heat pump water heater for kitchens exhaust heat recovery was presented,and its performances were investigated under different operating voltages.The experiment results show that the coefficient of performance decreases and the temperature difference between the hot and cold sides becomes larger with the increase of the operating voltage,but the heating time becomes short.The higher the temperature of water,the greater the temperature difference between the hot and cold sides,leading to a smaller coefficient of performance.Under an exhaust temperature of 36 ℃,the coefficient of performance decreases from 1.66 to 1.22 when the temperature of water increases from 28 ℃ to 46 ℃ with operating voltage 16 V.Performance tests illustrate that,compared with the conventional electrical water heaters,the new kind of thermoelectric heat pump water heater is more coefficient.展开更多
The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle drivin...The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle driving on a standard chassis dynamometer. A newly established Bangkok driving cycle (BDC) and the European driving cycle (EDC) which is presently adopted as the legislative cycle for testing automobiles registered in Thailand were used. The newly developed BDC is constructed using the driving characteristic data obtained from the real on-road driving tests along selected traffic routes. A method for selecting appropriate road routes for real driving tests is also introduced. Variations of keyed driving parameters of BDC with different driving cycles were discussed. The results showed that the HC and CO emission factors of BDC are almost two and four times greater than those of EDC, respectively. Although the difference in the NOx emission factor is small, the value from BDC is still greater than that of EDC by 10%. Under BDC, the test vehicle consumes fuel about 25% more than it does under EDC. All these differences are mainly attributed to the greater proportion of idle periods and higher fluctuations of vehicle speed in the BDC cycle. This result indicated that the exhausted emissions and fuel consumption of vehicles obtained from tests under the legislative modal-type driving cycle (EDC) are significantly different from those actually produced under real traffic conditions especially during peak periods.展开更多
Effects of hydrocarbon compositions on raw exhaust emissions and combustion processes were studied on an engine test bench. The optimization of gasoline hydrocarbon composition was discussed. As olefins content increa...Effects of hydrocarbon compositions on raw exhaust emissions and combustion processes were studied on an engine test bench. The optimization of gasoline hydrocarbon composition was discussed. As olefins content increased from 10.0% to 25.0% in volume, the combustion duration was shortened by about 2 degree crank angle (°CA), and the engine-out THC emission was reduced by about 15%. On the other hand, as aromatics content changed from 35.0% to 45.0%, the engine-out NOx emissions increased by 4%. An increment in olefins content resulted in a slight increase in engine-out CO emission, while the aromatics content had little effect on engine-out total hydrocarbon (THC) and CO emissions. Over the new European driving cycle (NEDC), the THC, NOx and CO emissions of fuel with 25.0% olefins and 35.0% aromatics were about 45%, 21% and 19% lower than those of fuel with 10.0% olefins and 40.0% aromatics, respectively. The optimized gasoline compositions for new engines and new vehicles have low aromatics and high olefins contents.展开更多
Abstract Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam tur- bine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal d...Abstract Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam tur- bine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal design of its structure without consideration of the wet steam condensing flow and the exhaust hood coupled with the front and rear parts. To better understand the aerodynamic performance influenced by the tilt angle of flow guide inside a diffuser, taking a 600 MW steam turbine as an example, a numerical simulator CFX is adopted to solve compressible three-dimensional (3D) Reynolds time-aver- aged N-S equations and standard k-e turbulence model. And the exhaust hood flow field influenced by different tilt angles of flow guide is investigated with consideration of the wet steam condensing flow and the exhaust hood coupled with the last stage blades and the condenser throat. The result shows that the total pressure loss coefficient and the static pressure recovery coefficient of exhaust hood change regularly and monotonously with the gradual increase of tilt angle of flow guide. When the tilt angle of flow guide is within the range of 30~ to 40~, the static pressure recovery coefficient is in the range of 15.27% to 17.03% and the total pressure loss coefficient drops to approximately 51%, the aerodynamic performance of exhaust hood is significantly improved. And the effectiveenthalpy drop in steam turbine increases by 0.228% to 0.274%. It is feasible to obtain a reasonable title angle of flow guide by the method of coupling the last stage and the condenser throat to exhaust hood in combination of the wet steam model, which provides a practical guidance to flow guide transformation and optimal design in exhaust hood.展开更多
There are at least three obvious trends in the developments of automotive market in China: the evolution of emission standards from Euro Ⅱ to Euro Ⅲ, the demand of lean-burn gasoline engine and the time of diesel ve...There are at least three obvious trends in the developments of automotive market in China: the evolution of emission standards from Euro Ⅱ to Euro Ⅲ, the demand of lean-burn gasoline engine and the time of diesel vehicles. The latest application and advances of exhaust catalysts by Chinese researchers, using some high effcient, economical and durable methods to meet these changes in emission regulations laws and engine technologies, were described. Rare earth oxides, such as lanthana, ceria-based solid solutions and perovskite-type oxides, are widely used as excellent promoters for thermal stability, oxygen storage capacity and oxidation/reduction activity in these catalysts. Four phases in the development of the auto exhaust catalyst industry in China since the mid 1970s were reviewed. It is argued that China will become the center of global auto exhaust catalysts industry in the next decades with its economic, technical and environmental incentives, which greatly depends on the research and development of rare earth.展开更多
A cascaded system of electrical discharges (non-thermal plasma) andadsorption process was investigated for the removal of oxides of Nitrogen (NO_x) and totalhydrocarbons (THC) from an actual diesel engine exhaust. The...A cascaded system of electrical discharges (non-thermal plasma) andadsorption process was investigated for the removal of oxides of Nitrogen (NO_x) and totalhydrocarbons (THC) from an actual diesel engine exhaust. The non-thermal plasma and adsorptionprocesses were separately studied first and then the cascaded process was studied. In this study,different types of adsorbents were used. The NO_x removal efficiency was higher withplasma-associated adsorption (cascaded) process compared to the individual processes and the removalefficiency was found almost invariant in time. When associated by plasma, among the adsorbentsstudied, activated charcoal and MS-13X were more effective for NO_x and THC removal respectively.The experiments were conducted at no load and at 50 % load conditions. The plasma reactor was keptat room temperature throughout the experiment, while the temperature of the adsorbent reactor wasvaried. A relative comparison of adsorbents was discussed at the end.展开更多
Si-Mo vermicular iron is an ideal material for exhaust manifold that works in high temperature and thermal cycle conditions because its properties of thermal fatigue resistance and thermal distortion resistance are si...Si-Mo vermicular iron is an ideal material for exhaust manifold that works in high temperature and thermal cycle conditions because its properties of thermal fatigue resistance and thermal distortion resistance are significantly better than that of gray cast iron and nodular iron. This paper explains that the vermicularity of Si-Mo vermicular iron is better to be controlled approximately to 50% for the applications of exhaust manifold castings, and generalizes the successful experience of vermicularizing technique that uses sandwich (pour over) process combining with cored-wire injection in trough process together, and uses rare earths-magnesium-silicon as vermicularizing alloy in Disa high speed molding line and automatic plug rod air pressure pouring furnace. In addition, this paper also describes the method to solve the shrinkage hole and porosity defects in the exhaust manifold production.展开更多
A plasma-assisted catalytic reactor was used to remove nitrogen oxides (NOx)from diesel engine exhaust operated under different load conditions. Initial studies were focused onplasma reactor (a dielectric barrier disc...A plasma-assisted catalytic reactor was used to remove nitrogen oxides (NOx)from diesel engine exhaust operated under different load conditions. Initial studies were focused onplasma reactor (a dielectric barrier discharge reactor) treatment of diesel exhaust at varioustemperatures. The nitric oxide (NO) removal efficiency was lowered when high temperature exhaust wastreated using plasma reactor. Also, NO removal efficiency decreased when 45% load exhaust wastreated. Studies were then made with plasma reactor combined with a catalytic reactor consisting ofa selective catalytic reduction (SCR) catalyst, V_2O_5/TiO_2. Ammonia was used as a reducing agentfor SCR process in a ratio of 1:1 to NOx. The studies were focused on temperatures of the SCRcatalytic reactor below 200℃. The plasma-assisted catalytic reactor was operated well to remove NOxunder no-load and load conditions. For an energy input of 96 J/l, the NOx removal efficienciesobtained under no-load and load conditions were 90% and 72% respectively at an exhaust temperatureof 100 ℃.展开更多
Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by...Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by discharge plasma in a dielectric barrier discharge reactor. N radicals were produced in a separate plasma reactor filled with BaTiO3 pellets and were then injected into the treatment zone, There was a significant improvement in the efficiency when the radicals were injected compared to that when there was no radical injection. The efficiency of NOx removal at 0 load with plasma alone was 14% whereas with the injection of N radicals it went up to 38%, The results of the experiments conducted at different loads are discussed,展开更多
This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being...This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being reported for the first time. The exhaust is takenfrom a diesel engine of 6 kW under no load conditions. Thecharacteristic behavior of a pulse energized dielectric barrierdischarge reactor in the diesel exhaust treatment is reported. TheNOx removal was not significant (36/100) when the reactor without anypacking was used.展开更多
An analysis has been made on the discharge plasma coupled with an adsorbent system for NOx removal. The cascaded plasma-adsorbent system may be perceived as a better alternative for the existing adsorbent-based abatem...An analysis has been made on the discharge plasma coupled with an adsorbent system for NOx removal. The cascaded plasma-adsorbent system may be perceived as a better alternative for the existing adsorbent-based abatement system in the industry. In this study the exhaust is sourced from a diesel generator set. It was observed that better NO removal in a plasma reactor can be made possible by achieving higher average fields and subsequent NO2 removal can be improved using an adsorbent system connected in cascade with the plasma system. The paper describes various findings pertaining to these comparative analyses.展开更多
In recent years, with attention paid to global environmental problems, there have been requirements for continuous improvement of automobile fuel economy and exhaust gas purification rate. The properties of the ferrit...In recent years, with attention paid to global environmental problems, there have been requirements for continuous improvement of automobile fuel economy and exhaust gas purification rate. The properties of the ferritic stainless steels (FSS) used to make automobile parts have been improved. This paper introduces the construction of automotive exhaust systems and describes their main failure behaviors and corrosion evaluation procedures.展开更多
基金supported by grants from the National Natural Science Foundation of China (Grant No. 32270955)the Jiangsu Provincial Medical Key Discipline (Grant No. YXZDXK202236)+1 种基金the Key Project of Jiangsu Provincial Health Commission (Grant No. K2023069)the Science and Technology Support Plan (Social Development) Project of Changzhou (Grant No. CE20235058)。
文摘In exploring persistent infections and malignancies, a distinctive subgroup of CD8^(+) T cells, progenitor exhausted CD8^(+) T(Tpex) cells, has been identified. These Tpex cells are notable for their remarkable self-renewal and rapid proliferation abilities. Recent strides in immunotherapy have demonstrated that Tpex cells expand and differentiate into responsive exhausted CD8^(+) T cells, thus underscoring their critical role in the immunotherapeutic retort. Clinical examinations have further clarified a robust positive correlation between the proportional abundance of Tpex cells and enhanced clinical prognosis. Tpex cells have found noteworthy applications in the formulation of inventive immunotherapeutic approaches against tumors. This review describes the functions of Tpex cells in the tumor milieu, particularly their potential utility in tumor immunotherapy. Precisely directing Tpex cells may be essential to achieving successful outcomes in immunotherapy against tumors.
文摘Experiments were conducted in this study to examine the thermal performance of a thermosyphon,made from Inconel alloy 625,could recover waste heat from automobile exhaust using a limited amount of fluid.The thermosyphon has an outer diameter of 27 mm,a thickness of 2.6 mm,and an overall length of 483 mm.The study involved directing exhaust gas onto the evaporator.This length includes a 180-mm evaporator,a 70-mm adiabatic section,a 223-mm condenser,and a 97-mm finned exchanger.The study examined the thermal performance of the thermosyphon under exhaust flow rates ranging from 0–10 g/sec and temperatures varying from 300℃–900℃.The influence of three parameters—inclination angle(5°–45°),water mass(2–5.3 g),and the quantity of non-condensable gas Argon(0–0.6 g)—was investigated to assess their impacts on the thermosyphon’s thermal efficiency.The experimental findings revealed that with 3 g of water and 0.0564 g of argon in the thermosyphon,the condenser reached its highest temperature at around 200℃.The ideal fuel loading rate for the thermosyphon falls between 0.2 and 0.7 g/s.Moreover,as inclination angles rise,outer wall temperatures of the thermosyphon increase.This is attributed to the explicit expansion of the effective heating area within the evaporation section,coupled with an amplified gravitational component of the water flux.Additionally,an upsurge in the quantity of non-condensable gas(NCG)can mitigate temperature gradients on the outer wall,resulting in a decline in the thermosyphon’s performance.The insulation applied to the adiabatic section demonstrated efficacy in augmenting temperature gradients on the outer wall,thereby improving the overall performance of the thermosyphon.As the water charge within the thermosyphon increases,there is a corresponding rise in heat transfer rates both from the exhaust to the thermosyphon and from the thermosyphon to the fuel.
文摘Test results of reducing two stroke motorcycle emissions with new type carburettors and electronic fuel injection systems are presented. Analyses and comparison between different systems are discussed. The adoption of electronically controlled injection and corresponding electronic control technique is an effective measure of prolonged vitality to improve emissions from two stroke motorcycles. Suggestions about the strategic steps of China′s motorcycle emission control are proposed.
文摘An improved near far field divided coupled method was established to investigate the electromagnetic properties of mildly overexpanded and underexpanded rocket exhaust plumes. Firstly, axisymmetric Navier Stokes equations incorporated with k ε two equation turbulence models were solved using time dependent approach to calculate the pressure of the near filed. Secondly, parabolized axisymmetric Navier Stokes equations incorporated with finite rate chemical kinetics models were marching on the detailed pressure map of the near field. The termination of the near field would yield the initial line for the far field. In addition, in the far field, the spatial marching method was directly used under the constant pressure condition, but considering more complicated chemically reacting process. Finally, the electromagnetic parameters of the whole plume were calculated with the electron conductive model. The calculated results of the overexpanded and underexpanded rocket exhaust plume were discussed. The predicted microwave attenuation accorded with the experimental results. This improved method is feasible for calculating the microwave attenuation characteristics of mildly non fully expanded rocket exhaust plumes.
文摘Tourism is of vital practical significance to low-carbon economic transition of resources-exhausted cities.By taking Gejiu City of Yunnan Province for example,the paper discussed that Gejiu City as the resources-exhausted city should positively develop tourism,particularly industrial heritage tourism,treating tourism development as the breakthrough and motive power of low-carbon economic transition of resources-exhausted cities,so as to walk out a unique road of tourism promoting low-carbon economic development.
基金supported by Chinese Postdoctoral Science Foundation(No.2014N560538)Hainan Province Colleges and Universities Scientific Research Project(No.Hnky2015-34)Project of Natural Science Foundation of Hainan Province(314090)
文摘Objective: To investigate the expression of myocardium connexin 43(Cx43) in late exercise preconditioning(LEP) cardioprotection. Methods: Eight-week-old adult male Sprague Dawley rats were randomly assigned into four groups(n=8). Myocardial injury was judged in accordance with serum levels of c Tn and NT-pro BNP as well as hematoxylin basicfuchsin picric acid staining of myocardium. Cx43 m RNA was detected by in situ hybridization and qualified by real-time fluorescence quantitative PCR. Cx43 protein was localized by immunohistochemistry and its expression level was determined by western blotting. Results: The LEP obviously attenuated the myocardial ischemia/hypoxia injury caused by exhaustive exercise. There was no significant difference of Cx43 m RNA level between the four groups. Cx43 protein level was decreased significantly in group EE(P<0.05). However, LEP produced a significant increase in Cx43 protein level(P<0.05), and the decreased Cx43 protein level in exhaustive exercise was significantly up-regulated by LEP(P<0.05). Conclusions: LEP protects rat heart against exhaustive exercise-induced myocardial injury by up-regulating the expression of myocardial Cx43.
基金Supported by Hunan Science and Technology Office(06wk3023)National High Technology Research and Development Program of China(2006AA05Z229)Project-sponsored by SRFfor ROCS,SEM
文摘A new kind of thermoelectric heat pump water heater for kitchens exhaust heat recovery was presented,and its performances were investigated under different operating voltages.The experiment results show that the coefficient of performance decreases and the temperature difference between the hot and cold sides becomes larger with the increase of the operating voltage,but the heating time becomes short.The higher the temperature of water,the greater the temperature difference between the hot and cold sides,leading to a smaller coefficient of performance.Under an exhaust temperature of 36 ℃,the coefficient of performance decreases from 1.66 to 1.22 when the temperature of water increases from 28 ℃ to 46 ℃ with operating voltage 16 V.Performance tests illustrate that,compared with the conventional electrical water heaters,the new kind of thermoelectric heat pump water heater is more coefficient.
基金funded by the Energy Policyand Planning Office (EPPO) of Thailand
文摘The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle driving on a standard chassis dynamometer. A newly established Bangkok driving cycle (BDC) and the European driving cycle (EDC) which is presently adopted as the legislative cycle for testing automobiles registered in Thailand were used. The newly developed BDC is constructed using the driving characteristic data obtained from the real on-road driving tests along selected traffic routes. A method for selecting appropriate road routes for real driving tests is also introduced. Variations of keyed driving parameters of BDC with different driving cycles were discussed. The results showed that the HC and CO emission factors of BDC are almost two and four times greater than those of EDC, respectively. Although the difference in the NOx emission factor is small, the value from BDC is still greater than that of EDC by 10%. Under BDC, the test vehicle consumes fuel about 25% more than it does under EDC. All these differences are mainly attributed to the greater proportion of idle periods and higher fluctuations of vehicle speed in the BDC cycle. This result indicated that the exhausted emissions and fuel consumption of vehicles obtained from tests under the legislative modal-type driving cycle (EDC) are significantly different from those actually produced under real traffic conditions especially during peak periods.
基金supported by the Beijing Municipal Science & Technology Commission(No. D0405002040221)
文摘Effects of hydrocarbon compositions on raw exhaust emissions and combustion processes were studied on an engine test bench. The optimization of gasoline hydrocarbon composition was discussed. As olefins content increased from 10.0% to 25.0% in volume, the combustion duration was shortened by about 2 degree crank angle (°CA), and the engine-out THC emission was reduced by about 15%. On the other hand, as aromatics content changed from 35.0% to 45.0%, the engine-out NOx emissions increased by 4%. An increment in olefins content resulted in a slight increase in engine-out CO emission, while the aromatics content had little effect on engine-out total hydrocarbon (THC) and CO emissions. Over the new European driving cycle (NEDC), the THC, NOx and CO emissions of fuel with 25.0% olefins and 35.0% aromatics were about 45%, 21% and 19% lower than those of fuel with 10.0% olefins and 40.0% aromatics, respectively. The optimized gasoline compositions for new engines and new vehicles have low aromatics and high olefins contents.
基金Supported by National Natural Science Foundation of China(Grant Nos.51576036,51476192)Science and Technology Development Planning Foundation of Jilin Province of China(Grant No.20140204040SF)
文摘Abstract Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam tur- bine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal design of its structure without consideration of the wet steam condensing flow and the exhaust hood coupled with the front and rear parts. To better understand the aerodynamic performance influenced by the tilt angle of flow guide inside a diffuser, taking a 600 MW steam turbine as an example, a numerical simulator CFX is adopted to solve compressible three-dimensional (3D) Reynolds time-aver- aged N-S equations and standard k-e turbulence model. And the exhaust hood flow field influenced by different tilt angles of flow guide is investigated with consideration of the wet steam condensing flow and the exhaust hood coupled with the last stage blades and the condenser throat. The result shows that the total pressure loss coefficient and the static pressure recovery coefficient of exhaust hood change regularly and monotonously with the gradual increase of tilt angle of flow guide. When the tilt angle of flow guide is within the range of 30~ to 40~, the static pressure recovery coefficient is in the range of 15.27% to 17.03% and the total pressure loss coefficient drops to approximately 51%, the aerodynamic performance of exhaust hood is significantly improved. And the effectiveenthalpy drop in steam turbine increases by 0.228% to 0.274%. It is feasible to obtain a reasonable title angle of flow guide by the method of coupling the last stage and the condenser throat to exhaust hood in combination of the wet steam model, which provides a practical guidance to flow guide transformation and optimal design in exhaust hood.
文摘There are at least three obvious trends in the developments of automotive market in China: the evolution of emission standards from Euro Ⅱ to Euro Ⅲ, the demand of lean-burn gasoline engine and the time of diesel vehicles. The latest application and advances of exhaust catalysts by Chinese researchers, using some high effcient, economical and durable methods to meet these changes in emission regulations laws and engine technologies, were described. Rare earth oxides, such as lanthana, ceria-based solid solutions and perovskite-type oxides, are widely used as excellent promoters for thermal stability, oxygen storage capacity and oxidation/reduction activity in these catalysts. Four phases in the development of the auto exhaust catalyst industry in China since the mid 1970s were reviewed. It is argued that China will become the center of global auto exhaust catalysts industry in the next decades with its economic, technical and environmental incentives, which greatly depends on the research and development of rare earth.
文摘A cascaded system of electrical discharges (non-thermal plasma) andadsorption process was investigated for the removal of oxides of Nitrogen (NO_x) and totalhydrocarbons (THC) from an actual diesel engine exhaust. The non-thermal plasma and adsorptionprocesses were separately studied first and then the cascaded process was studied. In this study,different types of adsorbents were used. The NO_x removal efficiency was higher withplasma-associated adsorption (cascaded) process compared to the individual processes and the removalefficiency was found almost invariant in time. When associated by plasma, among the adsorbentsstudied, activated charcoal and MS-13X were more effective for NO_x and THC removal respectively.The experiments were conducted at no load and at 50 % load conditions. The plasma reactor was keptat room temperature throughout the experiment, while the temperature of the adsorbent reactor wasvaried. A relative comparison of adsorbents was discussed at the end.
文摘Si-Mo vermicular iron is an ideal material for exhaust manifold that works in high temperature and thermal cycle conditions because its properties of thermal fatigue resistance and thermal distortion resistance are significantly better than that of gray cast iron and nodular iron. This paper explains that the vermicularity of Si-Mo vermicular iron is better to be controlled approximately to 50% for the applications of exhaust manifold castings, and generalizes the successful experience of vermicularizing technique that uses sandwich (pour over) process combining with cored-wire injection in trough process together, and uses rare earths-magnesium-silicon as vermicularizing alloy in Disa high speed molding line and automatic plug rod air pressure pouring furnace. In addition, this paper also describes the method to solve the shrinkage hole and porosity defects in the exhaust manifold production.
文摘A plasma-assisted catalytic reactor was used to remove nitrogen oxides (NOx)from diesel engine exhaust operated under different load conditions. Initial studies were focused onplasma reactor (a dielectric barrier discharge reactor) treatment of diesel exhaust at varioustemperatures. The nitric oxide (NO) removal efficiency was lowered when high temperature exhaust wastreated using plasma reactor. Also, NO removal efficiency decreased when 45% load exhaust wastreated. Studies were then made with plasma reactor combined with a catalytic reactor consisting ofa selective catalytic reduction (SCR) catalyst, V_2O_5/TiO_2. Ammonia was used as a reducing agentfor SCR process in a ratio of 1:1 to NOx. The studies were focused on temperatures of the SCRcatalytic reactor below 200℃. The plasma-assisted catalytic reactor was operated well to remove NOxunder no-load and load conditions. For an energy input of 96 J/l, the NOx removal efficienciesobtained under no-load and load conditions were 90% and 72% respectively at an exhaust temperatureof 100 ℃.
文摘Reported in this paper is a feasibility study on the injection of plasma induced N radicals for the abatement of NO and NOx present in the actual diesel exhaust. The radical laden diesel exhaust was further treated by discharge plasma in a dielectric barrier discharge reactor. N radicals were produced in a separate plasma reactor filled with BaTiO3 pellets and were then injected into the treatment zone, There was a significant improvement in the efficiency when the radicals were injected compared to that when there was no radical injection. The efficiency of NOx removal at 0 load with plasma alone was 14% whereas with the injection of N radicals it went up to 38%, The results of the experiments conducted at different loads are discussed,
文摘This paper reports the studies conducted on removal of oxides ofnitrogen (NOx) from diesel engine exhaust using electrical dischargeplasma combined with adsorbing materials such as molecular sieves.This study is being reported for the first time. The exhaust is takenfrom a diesel engine of 6 kW under no load conditions. Thecharacteristic behavior of a pulse energized dielectric barrierdischarge reactor in the diesel exhaust treatment is reported. TheNOx removal was not significant (36/100) when the reactor without anypacking was used.
文摘An analysis has been made on the discharge plasma coupled with an adsorbent system for NOx removal. The cascaded plasma-adsorbent system may be perceived as a better alternative for the existing adsorbent-based abatement system in the industry. In this study the exhaust is sourced from a diesel generator set. It was observed that better NO removal in a plasma reactor can be made possible by achieving higher average fields and subsequent NO2 removal can be improved using an adsorbent system connected in cascade with the plasma system. The paper describes various findings pertaining to these comparative analyses.
文摘In recent years, with attention paid to global environmental problems, there have been requirements for continuous improvement of automobile fuel economy and exhaust gas purification rate. The properties of the ferritic stainless steels (FSS) used to make automobile parts have been improved. This paper introduces the construction of automotive exhaust systems and describes their main failure behaviors and corrosion evaluation procedures.