This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation...This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.展开更多
In this paper,we prove the local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity in R^(2),R^(3).This model consists of an incompressible Navier-Stokes,a regularized system fo...In this paper,we prove the local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity in R^(2),R^(3).This model consists of an incompressible Navier-Stokes,a regularized system for the evolution of the deformation gradient and the Landau-Lifshitz-Gilbert system for the dynamics of the mag-netization.Our approach depends on approximating the system with a sequence of perturbed systems.展开更多
This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utiliz...This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.展开更多
The boundary value problems of the third-order ordinary differential equation have many practical application backgrounds and their some special cases have been studied by many authors. However, few scholars have stud...The boundary value problems of the third-order ordinary differential equation have many practical application backgrounds and their some special cases have been studied by many authors. However, few scholars have studied the boundary value problems of the complete third-order differential equations u′′′(t) = f (t,u(t),u′(t),u′′(t)). In this paper, we discuss the existence and uniqueness of solutions and positive solutions of the fully third-order ordinary differential equation on [0,1] with the boundary condition u(0) = u′(1) = u′′(1) = 0. Under some inequality conditions on nonlinearity f some new existence and uniqueness results of solutions and positive solutions are obtained.展开更多
In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate cri...In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate critical points of the potential function V(x),where a,b>0,1<p<5 are constants,andε>0 is a parameter.Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity,we establish the existence and local uniqueness results of multi-peak solutions,which concentrate at{a_(i)}1≤i≤k,where{a_(i)}1≤i≤k are non-degenerate critical points of V(x)asε→0.展开更多
Contact problems and elastoplastic problems are unified and described by the variational inequality formulation, in which the constraints of the constitutional relations for elastoplastic materials and the contact con...Contact problems and elastoplastic problems are unified and described by the variational inequality formulation, in which the constraints of the constitutional relations for elastoplastic materials and the contact conditions are relaxed totally. First, the coerciveness of the functional is proved. Then the uniqueness of the solution of variational inequality for the elastoplastic contact problems is demonstrated. The existence of the solution is also demonstrated according to the sufficient conditions for the solution of the elliptic variational inequality. A mathematical foundation is developed for the variational extremum principle of elastoplastic contact problems. The developed variational extremum forms can give an effective and strict mathematical modeling to solve contact problems with mathematical programming.展开更多
Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this p...Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated.展开更多
In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower soluti...In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower solutions. Our results improve someknown works.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
Two cases of the nested configurations in R3 consisting of two regular quadrilaterals are discussed. One case of them do not form central configuration, the other case can be central configuration. In the second case ...Two cases of the nested configurations in R3 consisting of two regular quadrilaterals are discussed. One case of them do not form central configuration, the other case can be central configuration. In the second case the existence and uniqueness of the central configuration are studied. If the configuration is a central configuration, then all masses of outside layer are equivalent, similar to the masses of inside layer. At the same time the following relation between r(the ratio of the sizes) and mass ratio b = m/m must be satisfied in which the masses at outside layer are not less than the masses at inside layer, and the solution of this kind of central configuration is unique for the given ratio (6) of masses.展开更多
This survey is concerned with the new developments on existence and uniqueness of solutions of some basic models in atmospheric dynamics, such as two-and three-dimensional quasi-geostrophic models and three-dimensiona...This survey is concerned with the new developments on existence and uniqueness of solutions of some basic models in atmospheric dynamics, such as two-and three-dimensional quasi-geostrophic models and three-dimensional balanced model. The main aim of this paper is to introduce some results about the global and local (with respect to time) existence of solutions given by the authors in recent years, but others' important contributions and the literature on this subject are also quoted. We discuss briefly the relationships among the existence and uniqueness, physical instability and computational instability. In the appendixes, some key mathematical techniques in obtaining our results are presented, which are of vital importance to other problems in geophysical fluid dynamics as well.展开更多
The thermistor problem is a coupled system of nonlinear PDEs with mixed boundary conditions. The goal of this paper is to study the existence, boundedness and uniqueness of the weak solution for this problem.
In this paper, the existence and uniqueness theorems of solutions of k-point boundary value problems for nth-order nonlinear differential equations are established by Leray-Schauder continuation theorem.
Under the necessary conditions for a double pyramidal central configuration with a diamond base to exist in the real number space, the existence and uniqueness of such configurations were studied by employing combined...Under the necessary conditions for a double pyramidal central configuration with a diamond base to exist in the real number space, the existence and uniqueness of such configurations were studied by employing combinedly the algebraic method and numerical calculation. It is found that there exists a planar curl triangle region G in a square Q such that any point in G and given by the ratio of the two diagonal lengths of the diamond base and the ratio of one diagonal length of the base to the height of the double pyramid configuration determines a unique double pyramid central configuration, while all points in Q-G have no referance to any central configuration.展开更多
In this paper, we discuss the limit cycles of the systemdx/dt=y·[1+(A(x)]oy/dt=(-x+δy+α_1x^2+α_2xy+α_5x^2y)[1+B(x)] (1)where A(x)=sum form i=1 to n(a_ix~), B(x)=sum form j=1 to m(β_jx^j) and 1+B(x)>0. We ...In this paper, we discuss the limit cycles of the systemdx/dt=y·[1+(A(x)]oy/dt=(-x+δy+α_1x^2+α_2xy+α_5x^2y)[1+B(x)] (1)where A(x)=sum form i=1 to n(a_ix~), B(x)=sum form j=1 to m(β_jx^j) and 1+B(x)>0. We prove that (1) possesses at most one limit cycle and give out the necessary and sufficient conditions of existence and uniqueness of limit cycles.展开更多
Analysis is carried out to study the existence, uniqueness and behavior of exact solutions of the fourth order nonlinear coupled ordinary differential equations arising in the flow and heat transfer of a viscoelastic,...Analysis is carried out to study the existence, uniqueness and behavior of exact solutions of the fourth order nonlinear coupled ordinary differential equations arising in the flow and heat transfer of a viscoelastic, electrically conducting fluid past a continuously stretching sheet. The ranges of the parametric values are obtained for which the system has a unique pair of solutions, a double pair of solutions and infinitely many solutions.展开更多
By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existen...By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existence and uniqueness of positive solution to Lidstone boundary value problem for 2mth-order ordinary differential equations and 2mth-order difference equations. The nonlinear term in the differential and difference equation may be singular.展开更多
In recent years, a vast amount of work has been done on initial value problems for important nonlinear evolution equations like the nonlinear Schrödinger equation (NLS) and the Korteweg-de Vries equation (KdV...In recent years, a vast amount of work has been done on initial value problems for important nonlinear evolution equations like the nonlinear Schrödinger equation (NLS) and the Korteweg-de Vries equation (KdV). No comparable attention has been given to mixed initial-boundary value problems for these equations, i.e. forced nonlinear systems. But in many cases of physical interest, the mathematical model leads precisely to the forced problems. For example, the launching of solitary waves in a shallow water channel, the excitation of ion-acoustic solitons in a double plasma machine, etc. In this article, we present the PDE (Partial Differential Equation) method to study the following iut = uxx - g|u|pu, g ∈ R, p > 3, x?∈ Ω = [0,L], 0 ≤?t?u (x,0) = u0 (x) ∈?H2 (Ω) and Robin inhomogeneous boundary condition ux (0,t) + αu (0,t) = R1(t), t ≥ 0 and ux (L,t) + αu (L,t) = R2 (t), t ≥ 0 (here?α?is a real number). The equation is posed in a semi-infinite strip on a finite domain Ω. Such problems are called forced problems and have many applications in other fields like physics and chemistry. The main tool of PDE method is semi-group theory. We are able to prove local existence and uniqueness theorem for the nonlinear Schrödinger equation under initial condition and Robin inhomogeneous boundary condition.展开更多
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness...High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.展开更多
文摘This paper is concerned with the Cauchy problem for a 3D fluid-particle interaction model in the so-called flowing regime inℝ3.Under the smallness assumption on both the external potential and the initial perturbation of the stationary solution in some Sobolev spaces,the existence and uniqueness of global smooth solutions in H3 of the system are established by using the careful energy method.
文摘In this paper,we prove the local existence and uniqueness of solutions to the evolutionary model for magnetoviscoelasticity in R^(2),R^(3).This model consists of an incompressible Navier-Stokes,a regularized system for the evolution of the deformation gradient and the Landau-Lifshitz-Gilbert system for the dynamics of the mag-netization.Our approach depends on approximating the system with a sequence of perturbed systems.
文摘This article investigates the well posedness and asymptotic behavior of Neumann initial boundary value problems for a class of pseudo-parabolic equations with singular potential and logarithmic nonlinearity. By utilizing cut-off techniques and combining with the Faedo Galerkin approximation method, local solvability was established. Based on the potential well method and Hardy Sobolev inequality, derive the global existence of the solution. In addition, we also obtained the results of decay.
文摘The boundary value problems of the third-order ordinary differential equation have many practical application backgrounds and their some special cases have been studied by many authors. However, few scholars have studied the boundary value problems of the complete third-order differential equations u′′′(t) = f (t,u(t),u′(t),u′′(t)). In this paper, we discuss the existence and uniqueness of solutions and positive solutions of the fully third-order ordinary differential equation on [0,1] with the boundary condition u(0) = u′(1) = u′′(1) = 0. Under some inequality conditions on nonlinearity f some new existence and uniqueness results of solutions and positive solutions are obtained.
基金supported by the Natural Science Foundation of China(11771166,12071169)the Hubei Key Laboratory of Mathematical Sciences and Program for Changjiang Scholars and Innovative Research Team in University#IRT17R46。
文摘In this paper,we study the existence and local uniqueness of multi-peak solutions to the Kirchhoff type equations-(ε^(2)a+εb∫_(R^(3))|■u|^(2))△u+V(x)u=u^(p),u>0 in R^(3),which concentrate at non-degenerate critical points of the potential function V(x),where a,b>0,1<p<5 are constants,andε>0 is a parameter.Applying the Lyapunov-Schmidt reduction method and a local Pohozaev type identity,we establish the existence and local uniqueness results of multi-peak solutions,which concentrate at{a_(i)}1≤i≤k,where{a_(i)}1≤i≤k are non-degenerate critical points of V(x)asε→0.
基金The National Natural Science Foundation of China(No.10672039)the Key Project of Ministry of Education of China(No.105083)
文摘Contact problems and elastoplastic problems are unified and described by the variational inequality formulation, in which the constraints of the constitutional relations for elastoplastic materials and the contact conditions are relaxed totally. First, the coerciveness of the functional is proved. Then the uniqueness of the solution of variational inequality for the elastoplastic contact problems is demonstrated. The existence of the solution is also demonstrated according to the sufficient conditions for the solution of the elliptic variational inequality. A mathematical foundation is developed for the variational extremum principle of elastoplastic contact problems. The developed variational extremum forms can give an effective and strict mathematical modeling to solve contact problems with mathematical programming.
文摘Because of the features involved with their varied kernels,differential operators relying on convolution formulations have been acknowledged as effective mathematical resources for modeling real-world issues.In this paper,we constructed a stochastic fractional framework of measles spreading mechanisms with dual medication immunization considering the exponential decay and Mittag-Leffler kernels.In this approach,the overall population was separated into five cohorts.Furthermore,the descriptive behavior of the system was investigated,including prerequisites for the positivity of solutions,invariant domain of the solution,presence and stability of equilibrium points,and sensitivity analysis.We included a stochastic element in every cohort and employed linear growth and Lipschitz criteria to show the existence and uniqueness of solutions.Several numerical simulations for various fractional orders and randomization intensities are illustrated.
文摘In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower solutions. Our results improve someknown works.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
基金Supported by the NSF of China(10231010)Supported by the NSF of CQSXXY (20030104)
文摘Two cases of the nested configurations in R3 consisting of two regular quadrilaterals are discussed. One case of them do not form central configuration, the other case can be central configuration. In the second case the existence and uniqueness of the central configuration are studied. If the configuration is a central configuration, then all masses of outside layer are equivalent, similar to the masses of inside layer. At the same time the following relation between r(the ratio of the sizes) and mass ratio b = m/m must be satisfied in which the masses at outside layer are not less than the masses at inside layer, and the solution of this kind of central configuration is unique for the given ratio (6) of masses.
文摘This survey is concerned with the new developments on existence and uniqueness of solutions of some basic models in atmospheric dynamics, such as two-and three-dimensional quasi-geostrophic models and three-dimensional balanced model. The main aim of this paper is to introduce some results about the global and local (with respect to time) existence of solutions given by the authors in recent years, but others' important contributions and the literature on this subject are also quoted. We discuss briefly the relationships among the existence and uniqueness, physical instability and computational instability. In the appendixes, some key mathematical techniques in obtaining our results are presented, which are of vital importance to other problems in geophysical fluid dynamics as well.
文摘The thermistor problem is a coupled system of nonlinear PDEs with mixed boundary conditions. The goal of this paper is to study the existence, boundedness and uniqueness of the weak solution for this problem.
文摘In this paper, the dynamic equations for Koiter shells have been studied by Galerkin method, the existence and uniqueness to the solutions are proved.
文摘In this paper, the existence and uniqueness theorems of solutions of k-point boundary value problems for nth-order nonlinear differential equations are established by Leray-Schauder continuation theorem.
文摘Under the necessary conditions for a double pyramidal central configuration with a diamond base to exist in the real number space, the existence and uniqueness of such configurations were studied by employing combinedly the algebraic method and numerical calculation. It is found that there exists a planar curl triangle region G in a square Q such that any point in G and given by the ratio of the two diagonal lengths of the diamond base and the ratio of one diagonal length of the base to the height of the double pyramid configuration determines a unique double pyramid central configuration, while all points in Q-G have no referance to any central configuration.
文摘In this paper, we discuss the limit cycles of the systemdx/dt=y·[1+(A(x)]oy/dt=(-x+δy+α_1x^2+α_2xy+α_5x^2y)[1+B(x)] (1)where A(x)=sum form i=1 to n(a_ix~), B(x)=sum form j=1 to m(β_jx^j) and 1+B(x)>0. We prove that (1) possesses at most one limit cycle and give out the necessary and sufficient conditions of existence and uniqueness of limit cycles.
文摘Analysis is carried out to study the existence, uniqueness and behavior of exact solutions of the fourth order nonlinear coupled ordinary differential equations arising in the flow and heat transfer of a viscoelastic, electrically conducting fluid past a continuously stretching sheet. The ranges of the parametric values are obtained for which the system has a unique pair of solutions, a double pair of solutions and infinitely many solutions.
基金supported by Scientific Research Fund of Heilongjiang Provincial Education Department (11544032)the National Natural Science Foundation of China (10571021, 10701020)
文摘By fixed point theorem of a mixed monotone operators, we study Lidstone boundary value problems to nonlinear singular 2mth-order differential and difference equations, and provide sufficient conditions for the existence and uniqueness of positive solution to Lidstone boundary value problem for 2mth-order ordinary differential equations and 2mth-order difference equations. The nonlinear term in the differential and difference equation may be singular.
文摘In recent years, a vast amount of work has been done on initial value problems for important nonlinear evolution equations like the nonlinear Schrödinger equation (NLS) and the Korteweg-de Vries equation (KdV). No comparable attention has been given to mixed initial-boundary value problems for these equations, i.e. forced nonlinear systems. But in many cases of physical interest, the mathematical model leads precisely to the forced problems. For example, the launching of solitary waves in a shallow water channel, the excitation of ion-acoustic solitons in a double plasma machine, etc. In this article, we present the PDE (Partial Differential Equation) method to study the following iut = uxx - g|u|pu, g ∈ R, p > 3, x?∈ Ω = [0,L], 0 ≤?t?u (x,0) = u0 (x) ∈?H2 (Ω) and Robin inhomogeneous boundary condition ux (0,t) + αu (0,t) = R1(t), t ≥ 0 and ux (L,t) + αu (L,t) = R2 (t), t ≥ 0 (here?α?is a real number). The equation is posed in a semi-infinite strip on a finite domain Ω. Such problems are called forced problems and have many applications in other fields like physics and chemistry. The main tool of PDE method is semi-group theory. We are able to prove local existence and uniqueness theorem for the nonlinear Schrödinger equation under initial condition and Robin inhomogeneous boundary condition.
基金supported by the National Natural Science Foundation of China(No.52273280)the Creative Research Groups of China(No.51921001).
文摘High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance.