The potential release capacity of arsenic(As)from sediment was evaluated under a high level of exogenous organic matter(EOM)with both bioreactive and chemically reactive organic matters(OMs).The OMs were characterized...The potential release capacity of arsenic(As)from sediment was evaluated under a high level of exogenous organic matter(EOM)with both bioreactive and chemically reactive organic matters(OMs).The OMs were characterized by FI,HIX,BIX,and SUVA254 fluorescence indices showing the biological activities were kept at a high level during the experimental period.At the genus level,Fe/Mn/As-reducing bacteria(Geobacter,Pseudomonas,Bacillus,and Clostridium)and bacteria(Paenibacillus,Acidovorax,Delftia,and Sphingomonas)that can participate in metabolic transformation using EOM were identified.The reducing condition occurs which promoted As,Fe,and Mn releases at very high concentrations of OM.However,As release increased during the first 15-20 days,followed by a decline contributed by secondary iron precipitation.The degree of As release may be limited by the reactivity of Fe(hydro)oxides.The EOM infiltration enhances As and Mn releases in aqueous conditions causing the risk of groundwater pollution,which could occur in specific sites such as landfills,petrochemical sites,and managed aquifer recharge projects.展开更多
基金supported by the National Key Research and Development Program(2019YFC1806204)the National Natural Science Foundation of China(No.41907178).
文摘The potential release capacity of arsenic(As)from sediment was evaluated under a high level of exogenous organic matter(EOM)with both bioreactive and chemically reactive organic matters(OMs).The OMs were characterized by FI,HIX,BIX,and SUVA254 fluorescence indices showing the biological activities were kept at a high level during the experimental period.At the genus level,Fe/Mn/As-reducing bacteria(Geobacter,Pseudomonas,Bacillus,and Clostridium)and bacteria(Paenibacillus,Acidovorax,Delftia,and Sphingomonas)that can participate in metabolic transformation using EOM were identified.The reducing condition occurs which promoted As,Fe,and Mn releases at very high concentrations of OM.However,As release increased during the first 15-20 days,followed by a decline contributed by secondary iron precipitation.The degree of As release may be limited by the reactivity of Fe(hydro)oxides.The EOM infiltration enhances As and Mn releases in aqueous conditions causing the risk of groundwater pollution,which could occur in specific sites such as landfills,petrochemical sites,and managed aquifer recharge projects.