The first exothermic peak of cement-based material occurs a few minutes after mixing,and the properties of three dimensional(3D)printed concrete,such as setting time,are very sensitive to this.Against this background,...The first exothermic peak of cement-based material occurs a few minutes after mixing,and the properties of three dimensional(3D)printed concrete,such as setting time,are very sensitive to this.Against this background,based on the classical Park cement exothermic model of hydration,we propose and construct a numerical model of the first exothermic peak,taking into account the proportions of C_(3)S,C_(3)A and quicklime in particular.The calculated parameters are calibrated by means of relevant published exothermic test data.It is found that this developed model offers a good simulation of the first exothermic peak of hydration for C_(3)S and C_(3)A proportions from 0 to 100% of cement clinker and reflects the effect of quicklime content at 8%-10%.The unique value of this research is provision of an important computational tool for applications that are sensitive to the first exothermic peak of hydration,such as 3D printing.展开更多
The glass-forming ability of Mg-Cu-Gd alloys could be significantly promoted with the addition of Ag.A calorimetric anomaly could be observed in the supercooled liquid region of the Mg-Cu-Ag-Gd metallic glass,indicati...The glass-forming ability of Mg-Cu-Gd alloys could be significantly promoted with the addition of Ag.A calorimetric anomaly could be observed in the supercooled liquid region of the Mg-Cu-Ag-Gd metallic glass,indicating the occurrence of a liquid-state phase transition driven by entropy.However,the underlying mechanism of the polyamorphous phase transition remains unsettled.In the paper,in situ scattering techniques were employed to reveal multiscale structure evidence in a Mg65Cu15Ag10Gd10metallic glass with an anomalous exothermic peak upon heating.Resistivity measurements indicate a reentrant behavior for the Mg-Cu-Ag-Gd metallic glass in the anomalous exothermic peak temperature region during heating.In situ synchrotron diffraction results revealed that the local atomic structure tends to be ordered and loosely packed first,followed by reentering into the initial state upon heating.Moreover,time-resolved small-angle synchrotron X-ray scattering(SAXS) results show an increase in nanoscale heterogeneity first followed by a reentrant supercooled liquid behavior.A core-shell structure model has been used to fit the SAXS profiles when polyamorphous phase transition occurs.In contrast,there is no structure anomaly for the reference Mg-Cu-Gd alloy system.The detailed multiscale structural evidence suggests the occurrence of a liquid-liquid phase transition followed by a reentrant behavior in the MgCu-Ag-Gd metallic glass.Our results deepen the understanding of the structural origin of the glass-forming ability and shed light on the possibility of tuning the physical and mechanical properties by heat-treatment in the supercooled liquid region of Mg-based metallic glasses.展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.52178240)the Shanghai Scientific Research Program(No.21DZ1200401).
文摘The first exothermic peak of cement-based material occurs a few minutes after mixing,and the properties of three dimensional(3D)printed concrete,such as setting time,are very sensitive to this.Against this background,based on the classical Park cement exothermic model of hydration,we propose and construct a numerical model of the first exothermic peak,taking into account the proportions of C_(3)S,C_(3)A and quicklime in particular.The calculated parameters are calibrated by means of relevant published exothermic test data.It is found that this developed model offers a good simulation of the first exothermic peak of hydration for C_(3)S and C_(3)A proportions from 0 to 100% of cement clinker and reflects the effect of quicklime content at 8%-10%.The unique value of this research is provision of an important computational tool for applications that are sensitive to the first exothermic peak of hydration,such as 3D printing.
基金financially supported by the National Natural Science Foundation of China(No.51871120)the Natural Science Foundation of Jiangsu Province(No.BK20200019)+4 种基金the Fundamental Research Funds for the Central Universities(Nos.30919011107 and 30919011404)support by Shenzhen Science and Technology Innovation Committee(No.JCYJ20170413140446951)the supports by Shenzhen Science and Technology Innovation Commission(No.JCYJ20180507181806316)the supports by Shenzhen Science and Technology Innovation Commission(No.JCYJ202000109105618137)the Ministry of Science and Technology of China(No.2016YFA0401501)。
文摘The glass-forming ability of Mg-Cu-Gd alloys could be significantly promoted with the addition of Ag.A calorimetric anomaly could be observed in the supercooled liquid region of the Mg-Cu-Ag-Gd metallic glass,indicating the occurrence of a liquid-state phase transition driven by entropy.However,the underlying mechanism of the polyamorphous phase transition remains unsettled.In the paper,in situ scattering techniques were employed to reveal multiscale structure evidence in a Mg65Cu15Ag10Gd10metallic glass with an anomalous exothermic peak upon heating.Resistivity measurements indicate a reentrant behavior for the Mg-Cu-Ag-Gd metallic glass in the anomalous exothermic peak temperature region during heating.In situ synchrotron diffraction results revealed that the local atomic structure tends to be ordered and loosely packed first,followed by reentering into the initial state upon heating.Moreover,time-resolved small-angle synchrotron X-ray scattering(SAXS) results show an increase in nanoscale heterogeneity first followed by a reentrant supercooled liquid behavior.A core-shell structure model has been used to fit the SAXS profiles when polyamorphous phase transition occurs.In contrast,there is no structure anomaly for the reference Mg-Cu-Gd alloy system.The detailed multiscale structural evidence suggests the occurrence of a liquid-liquid phase transition followed by a reentrant behavior in the MgCu-Ag-Gd metallic glass.Our results deepen the understanding of the structural origin of the glass-forming ability and shed light on the possibility of tuning the physical and mechanical properties by heat-treatment in the supercooled liquid region of Mg-based metallic glasses.