To develop an efficient way to overcome the contradiction among flame retardancy,smoke suppression,and thermal insulation in expanded polystyrene(EPS)foams,which are widely used insulation materials in buildings,a nov...To develop an efficient way to overcome the contradiction among flame retardancy,smoke suppression,and thermal insulation in expanded polystyrene(EPS)foams,which are widely used insulation materials in buildings,a novel"green"porous bio-based flame-retard ant starch(FRS)coating was designed from starch modified with phytic acid(PA)that simultaneously acts as both a flame retardant and an adhesive.This porous FRS coating has open pores,which,in combination with the closed cells formed by EPS beads,create a hierarchically porous structure in FRS-EPS that results in superior thermal insulation with a lower thermal conductivity of 27.0 mW·(m·K)^(-1).The resultant FRS-EPS foam showed extremely low heat-release rates and smoke-production release,indicating excellent fire retardancy and smoke suppression.The specific optical density was as low as 121,which was 80.6%lower than that of neat EPS,at 624.The FRS-EPS also exhibited self-extinguishing behavior in vertical burning tests and had a high limiting oxygen index(LOI)value of 35.5%.More interestingly,after being burnt with an alcohol lamp for 30 min,the top side temperature of the FRS-EPS remained at only 140℃with ignition,thereby exhibiting excellent fire resistance.Mechanism analysis confirmed the intumescent action of FRS,which forms a compact phosphorus-rich hybrid barrier,and the phosphorus-containing compounds that formed in the gas phase contributed to the excellent flame retardancy and smoke suppression of FRS-EPS.This novel porous biomass-based FRS system provides a promising strategy for fabricating polymer foams with excellent flame retardancy,smoke suppression,and thermal insulation.展开更多
Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t...Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.展开更多
In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorize...In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorizes a by-product like rice husk, often considered waste, and reuses polystyrene, a plastic waste, thereby contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene into a solvent to create a binder, which is then mixed with rice husk and cold-compacted into composite materials. The study examines the impact of two particle sizes (fine and coarse) and different proportions of recycled polystyrene binder. The results show significant variations in the mechanical characteristics of the composites, with Modulus of Rupture (MOR) values varying from 2.41 to 3.47 MPa, Modulus of Elasticity (MOE) ranging from 223.41 to 1497.2 MPa, and Stiffness Coefficient (K) from 5.04 to 33.96 N/mm. These characteristics demonstrate that these composites are appropriate for various construction applications, including interior decoration, panel claddings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only highlights the recycling of agricultural and plastic waste but also provides a localized approach to addressing global climate change challenges through the adoption of sustainable building materials.展开更多
Managing agricultural waste and expanded polystyrene (EPS) poses significant environmental and economic challenges. This study aims to create composites from millet husks, rice husks, and recycled EPS, using a manufac...Managing agricultural waste and expanded polystyrene (EPS) poses significant environmental and economic challenges. This study aims to create composites from millet husks, rice husks, and recycled EPS, using a manufacturing method that involves dissolving the polystyrene in a solvent followed by cold pressing. Various particle sizes and two binder dosages were investigated to assess their influence on the physico-mechanical properties of the composites. The mechanical properties obtained range from 2.54 to 4.47 MPa for the Modulus of Rupture (MOR) and from 686 to 1400 MPa for the Modulus of Elasticity in Bending (MOE). The results indicate that these composites have potential for applications in the construction sector, particularly for wood structures and interior decoration. Moreover, surface treatments could enhance their durability and mechanical properties. This research contributes to the valorization of agricultural and plastic waste as eco-friendly and economical construction materials.展开更多
Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,w...Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.展开更多
To prevent expanded polystyrene (EPS) beads from rising up to the surface in the molding process of EPS lightweight concrete, vibration with pressure was applied and the polyvinyl acetate (PVA) emulsion was adopte...To prevent expanded polystyrene (EPS) beads from rising up to the surface in the molding process of EPS lightweight concrete, vibration with pressure was applied and the polyvinyl acetate (PVA) emulsion was adopted to improve its mechanical properties. The mechanical properties, thermal properties and durability of EPS lightweight concrete were tested. The microstruetures of EPS lightweight concrete were observed by scanning electron microscope (SEM). Vibration with pressure reduces the number of small cracks. The 180 d compressive strength and flexural strength increase obviously as a large amount of PVA was added. The mixed amount of PVA has no obvious influence on the thermal performance when it is not more than 10% of the cement. Vibration with pressure and surface modification of EPS beads by PVA improve the combination of EPS beads with cement stone and the mechanical properties of EPS lightweight concrete.展开更多
The mechanical property of a novel expanded polystyrene cement-based material (EPS-C), which was prepared by compressing semi-dry materials molding, was investigated. The compressive behavior was analyzed by compres...The mechanical property of a novel expanded polystyrene cement-based material (EPS-C), which was prepared by compressing semi-dry materials molding, was investigated. The compressive behavior was analyzed by compression tests to gain the energy absorbed during failure. Performance for impact resistance was tested by a self-made device. The results figures out that the EPS-C has good toughness and can reach swain of 0.7 without failure. The stress-strain curve is quite different from that of normal EPS concrete. It can be divided into three stages and in the third stage the compressing exhibits the highest energy absorption. With the rising of cement ratio, the impact force absorption (IEA) decreases first and then increases. The impact energy absorption (IEA) increases first and then decreases. The lowest IEA and the highest lEA appear at the cement dosage from 233 g/L to 267 g/L and from 233 g/L to 300 g/L, respectively.展开更多
Environmental pollution is a whole world concern. One of the causes of </span><span><span style="font-family:Verdana;">that </span><span style="font-family:Verdana;">p...Environmental pollution is a whole world concern. One of the causes of </span><span><span style="font-family:Verdana;">that </span><span style="font-family:Verdana;">pollution</span></span><span><span style="font-family:Verdana;"> is the proliferation of plastic waste. Among these </span><span style="font-family:Verdana;">wastes</span><span style="font-family:Verdana;"> there is expanded </span></span><span style="font-family:Verdana;">polystyrene (EPS), mainly from </span><span style="font-family:Verdana;">packaging</span><span style="font-family:Verdana;">. This study aims to valorize EPS waste by developing a composite material from EPS waste and wood waste. For this purpose, a resin made of EPS has been elaborated by dissolving EPS in acetone. That resin was used as a binder in volume proportions of 15%, 20%, 25% </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> 30% to stabilize the samples. Some of them were thermoformed. The method of elaboration was based on a device consisting of an extruder for mixing the constituents, and a manual press for shaping and compacting the samples. Analyses show that the drying time depends on the composition of the mixture. Increasing the resin content leads to reduce water absorption and porosity of the samples;it also contributes to homogenize the internal structure of the samples. However, for the same resin contents, the thermoformed samples are less porous;they have </span><span style="font-family:Verdana;">more</span><span style="font-family:Verdana;"> homogeneous internal structure</span><span style="font-family:Verdana;">;and</span><span style="font-family:Verdana;"> absorb less water than non-thermoformed samples.展开更多
<div style="text-align:justify;"> <span style="font-family:Verdana;">The use of vegetable fibers composites in structures sometimes presents significant fires risks because of their hig...<div style="text-align:justify;"> <span style="font-family:Verdana;">The use of vegetable fibers composites in structures sometimes presents significant fires risks because of their high flammability. This work aims to study the impact of the addition of mineral filler (clay) on the fire behaviour of wood-polystyrene composites and their mechanical properties. Thus, composites containing 25% of expanded polystyrene binder have been produced. On this base material, proportions of clay ranging from 0% to 15% were gradually added. These samples were elaborated by compaction and for some them, submitted to thermoforming after drying. Both kinds of sample were subjected to flame persistence test;flexural strength and compressive strength test were also measured. The results show that composites without mineral filler ignite continuously until the total consumption and when the mineral filler content increases the combustion time decreases. The addition of the mineral filler allows these composites to pass from class M3 of moderately flammable combustible materials to class M2 of hardly flammable materials, according to the M classification of construction and furnishing materials. The measurement of the mechanical properties shows that the strengths increase when the filler content goes from 0% to 10% and then decrease. This leads to set the optimum content of mineral filler around 10%.</span> </div>展开更多
This study tackles current environmental challenges by developing innovative and eco-friendly particle boards utilizing sorghum husk, combined with recycled expanded polystyrene (EPS). This dual eco-responsible approa...This study tackles current environmental challenges by developing innovative and eco-friendly particle boards utilizing sorghum husk, combined with recycled expanded polystyrene (EPS). This dual eco-responsible approach valorizes sorghum husk, often deemed agricultural waste, and repurposes EPS, a plastic waste, thus contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene within a solvent to create a binder, which is then mixed with sorghum husk and cold-pressed into composite boards. The study explores the impact of two particle sizes (fine and coarse) and two different concentrations of the recycled EPS binder. Results demonstrate significant variations in the boards’ mechanical properties, displaying a range of Modulus of Rupture (MOR) from 0.84 MPa to 3.85 MPa, and Modulus of Elasticity (MOE) spanning from 658.13 MPa to 1313.25 MPa, influenced by the binder concentration and particle size. These characteristics suggest that the boards can be effectively used in various construction applications, including interior decoration, false ceilings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only exemplifies the valorization of plastic and agricultural wastes but also offers a practical, localized solution to global climate change challenges by promoting sustainable construction materials.展开更多
The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial ...The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.展开更多
In this paper, we investigate the properties of an alternative material for use in marine engineering, namely a rigid and light sandwich-structured composite made of expanded polystyrene and fiberglass. Not only does ...In this paper, we investigate the properties of an alternative material for use in marine engineering, namely a rigid and light sandwich-structured composite made of expanded polystyrene and fiberglass. Not only does this material have an improved section modulus, but it is also inexpensive, light, easy to manipulate, and commercially available in various sizes. Using a computer program based on the finite element method, we calculated the hogging and sagging stresses and strains acting on a prismatic boat model composed of this material, and determined the minimum sizes and maximum permissible stresses to avoid deformation. Finally, we calculated the structural weight of the resulting vessel for comparison with another structure of comparable dimensions constructed from the commonly used core material Divinycell.展开更多
We developed a new structural lightweight concrete by totally or partially replacing coarse and fine aggregates in high performance concrete by expanded polystyrene (EPS) beads. In this work,the sizes of EPS bead were...We developed a new structural lightweight concrete by totally or partially replacing coarse and fine aggregates in high performance concrete by expanded polystyrene (EPS) beads. In this work,the sizes of EPS bead were 1.0,2.5 and 6.3 mm. Lightweight EPS concretes with a wide range of concrete densities and compressive strengths were successfully developed. Compressive strength,splitting tensile strength,shrinkage,and water absorption were examined. Additionally,fine silica fume (SF) and polypropylene (PP) fibers were added to improve the mechanical and shrinkage properties of EPS concretes. The results show that fine SF greatly increases the bond strength between the EPS beads and cement paste,thus increasing the compressive strength of EPS concrete. With inclusion of PP fibers,drying shrinkage properties are significantly improved.展开更多
The vibrations induced by the passage of high-speed trains(HSTs)are considered a crucial issue in the field of environmental and geotechnical engineering.Several wave barriers have been investigated to reduce the detr...The vibrations induced by the passage of high-speed trains(HSTs)are considered a crucial issue in the field of environmental and geotechnical engineering.Several wave barriers have been investigated to reduce the detrimental effects of HST-induced vibrations.This study is focused on the potential implementation of an innovative mitigation technique to alleviate the developed vibrations.In particular,the use of expanded polystyrene(EPS)blocks as partial fill material of embankment slopes was examined.The efficiency of the proposed mitigation technique was numerically investigated.More specifically,a 3 D soil-track model was developed to study the cross-section of a railway track,embankment,and the underlying soil layers.The passage of the HST,Thalys,was simulated using a moving load method,and the soil response was calculated at several distances from the track.Several parameters influenced the effectiveness of the examined mitigation measure.Therefore,to ensure an optimal design,a robust procedure is necessary which considers the impact of these factors.Hence,the implementation of EPS blocks on several embankments with different geometry,in terms of height and slope angle,was investigated.展开更多
As the construction of high-rise building to expand the product line of lightweight concrete. becomes popular, improvement and innovation are required In this paper, two ways of fabricating lightweight concrete were c...As the construction of high-rise building to expand the product line of lightweight concrete. becomes popular, improvement and innovation are required In this paper, two ways of fabricating lightweight concrete were combined to make a new kind of super lightweight concrete. Normal aggregate is replaced with expanded polystyrene (EPS) granule, while foam is introduced to facilitate fabrication process. As a result, super lightweight concrete denoted as EPS foamed concrete is fabricated, whose bulk density is less than 500 kg/m3. Compressive properties of EPS foamed concrete with bulk density 300--500 kg/m3 were investigated by stress-strain curve. It's demonstrated that the compressive strength ranges from 0.7 to 2.5 MPa, which is higher than that of similar products. Furthermore, low elastic module and high residual to ultimate strength ratio ensure its excellent deformation and energy absorption capacity. At last, numerical analysis was performed to interpret the inherent variation of elastic modulus and failure mechanism of this material. The results show that EPS foamed concrete is a kind of super lightweight, easy to fabricate material with excellent compressive property and profound utilization potential.展开更多
Lightweight geomaterial(LWGM)possesses such merit characteristics as low unit weight,environmental protection(recycling these materials instead of stockpiling them),buffering mechanical property and thermal insula...Lightweight geomaterial(LWGM)possesses such merit characteristics as low unit weight,environmental protection(recycling these materials instead of stockpiling them),buffering mechanical property and thermal insulation[1].LWGM,an attractive substitute for earth fills,展开更多
A series of laboratory experiments were conducted to study emissions of hexabromocyclododecane(HBCDD)into aqueous leaching fluid under simulated landfill conditions.Expanded(EPS)and extruded(XPS)polystyrene building i...A series of laboratory experiments were conducted to study emissions of hexabromocyclododecane(HBCDD)into aqueous leaching fluid under simulated landfill conditions.Expanded(EPS)and extruded(XPS)polystyrene building insulation foam samples containing HBCDD were contacted with deionised Milli-Q water containing 0,100 and 1000 mg L1 dissolved humic matter(DHM)as leaching fluid.Concentrations of HBCDD were determined in the resulting fluid and single and serial batch experiments conducted.The impacts on HBCDD concentrations in the leaching fluid temperature and pH were examined.Data from these experiments show that HBCDD concentrations in leaching fluid following contact with EPS and XPS almost all exceeded the aqueous solubilities for each diastereomer and the technical HBCDD formula.This indicates that agitation and abrasion of EPS and XPS were significant mechanisms of HBCDD emission to leaching fluid.Specifically,under such conditions,HBCDD is likely associated with fine abraded particles of the foam and concentrations in the leaching fluid are therefore not limited by the aqueous solubility of HBCDD.Consistent with this,the length of contact time had a significant positive effect on concentrations of all diastereomers in the leaching fluid for XPS and for the least soluble diastereomer,g-HBCDD for EPS.Generally,the presence of DHM in the leaching fluid and elevated leaching fluid temperatures had significant positive effects on HBCDD concentrations in leaching fluid for both EPS and XPS.Overall,while leaching fluids of pH 8.5 significantly enhanced concentrations of a-HBCDD released from EPS,pH exerts a minor effect on concentrations of HBCDD in leaching fluid.展开更多
Construction loading before the age of 28 d can have the most significant effects on the slabs, especially for multi-story structures. The changing properties of the young concrete complicate the prediction of service...Construction loading before the age of 28 d can have the most significant effects on the slabs, especially for multi-story structures. The changing properties of the young concrete complicate the prediction of serviceability design requirements also. An experimental investigation is performed on four simply supported Light-Weight Concrete (LWC) one-way slabs subjected to immediate loading at 14 d. Effects of aggregate type, loading levels and cracking moment together with the influences of ultimate moment capacity and service moment on the instantaneous deflection of slabs are studied. Comparison of the obtained results with predictions of existing models in the literature shows considerable differences between the recorded and estimated instantaneous deflection of LWC slabs. Based on sensitivity analysis of the effective parameters, a new equation is proposed and verified to predict the instantaneous deflection of LWC slabs subjected to loading at the age of 14 d.展开更多
基金financially supported by the National Natural Science Foundation of China(51827803,51320105011,51790504,and 51721091)the Young Elite Scientists Sponsorship Program by CASTFundamental Research Funds for the Central Universities。
文摘To develop an efficient way to overcome the contradiction among flame retardancy,smoke suppression,and thermal insulation in expanded polystyrene(EPS)foams,which are widely used insulation materials in buildings,a novel"green"porous bio-based flame-retard ant starch(FRS)coating was designed from starch modified with phytic acid(PA)that simultaneously acts as both a flame retardant and an adhesive.This porous FRS coating has open pores,which,in combination with the closed cells formed by EPS beads,create a hierarchically porous structure in FRS-EPS that results in superior thermal insulation with a lower thermal conductivity of 27.0 mW·(m·K)^(-1).The resultant FRS-EPS foam showed extremely low heat-release rates and smoke-production release,indicating excellent fire retardancy and smoke suppression.The specific optical density was as low as 121,which was 80.6%lower than that of neat EPS,at 624.The FRS-EPS also exhibited self-extinguishing behavior in vertical burning tests and had a high limiting oxygen index(LOI)value of 35.5%.More interestingly,after being burnt with an alcohol lamp for 30 min,the top side temperature of the FRS-EPS remained at only 140℃with ignition,thereby exhibiting excellent fire resistance.Mechanism analysis confirmed the intumescent action of FRS,which forms a compact phosphorus-rich hybrid barrier,and the phosphorus-containing compounds that formed in the gas phase contributed to the excellent flame retardancy and smoke suppression of FRS-EPS.This novel porous biomass-based FRS system provides a promising strategy for fabricating polymer foams with excellent flame retardancy,smoke suppression,and thermal insulation.
基金funding support from National Natural Science Foundation of China(Grant No.52179109)Jiangsu Provincial Natural Science Foundation(Grant No.BK20230967)Open Research Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(Grant No.KF2022-02).
文摘Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.
文摘In the current context of environmental challenges, this study focuses on developing innovative and eco-friendly composites using rice husk and recycled expanded polystyrene. This dual-responsibility approach valorizes a by-product like rice husk, often considered waste, and reuses polystyrene, a plastic waste, thereby contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene into a solvent to create a binder, which is then mixed with rice husk and cold-compacted into composite materials. The study examines the impact of two particle sizes (fine and coarse) and different proportions of recycled polystyrene binder. The results show significant variations in the mechanical characteristics of the composites, with Modulus of Rupture (MOR) values varying from 2.41 to 3.47 MPa, Modulus of Elasticity (MOE) ranging from 223.41 to 1497.2 MPa, and Stiffness Coefficient (K) from 5.04 to 33.96 N/mm. These characteristics demonstrate that these composites are appropriate for various construction applications, including interior decoration, panel claddings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only highlights the recycling of agricultural and plastic waste but also provides a localized approach to addressing global climate change challenges through the adoption of sustainable building materials.
文摘Managing agricultural waste and expanded polystyrene (EPS) poses significant environmental and economic challenges. This study aims to create composites from millet husks, rice husks, and recycled EPS, using a manufacturing method that involves dissolving the polystyrene in a solvent followed by cold pressing. Various particle sizes and two binder dosages were investigated to assess their influence on the physico-mechanical properties of the composites. The mechanical properties obtained range from 2.54 to 4.47 MPa for the Modulus of Rupture (MOR) and from 686 to 1400 MPa for the Modulus of Elasticity in Bending (MOE). The results indicate that these composites have potential for applications in the construction sector, particularly for wood structures and interior decoration. Moreover, surface treatments could enhance their durability and mechanical properties. This research contributes to the valorization of agricultural and plastic waste as eco-friendly and economical construction materials.
基金Project(2012JQ7013)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(QN2012025)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2011BSJJ084)supported by Research Foundation of Northwest A&F University,China
文摘Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.
基金Supported by Tianjin Natural Science Foundation (No.06YFJMJC05900)Science and Technology Key Project of Hebei Province (No.05213810)
文摘To prevent expanded polystyrene (EPS) beads from rising up to the surface in the molding process of EPS lightweight concrete, vibration with pressure was applied and the polyvinyl acetate (PVA) emulsion was adopted to improve its mechanical properties. The mechanical properties, thermal properties and durability of EPS lightweight concrete were tested. The microstruetures of EPS lightweight concrete were observed by scanning electron microscope (SEM). Vibration with pressure reduces the number of small cracks. The 180 d compressive strength and flexural strength increase obviously as a large amount of PVA was added. The mixed amount of PVA has no obvious influence on the thermal performance when it is not more than 10% of the cement. Vibration with pressure and surface modification of EPS beads by PVA improve the combination of EPS beads with cement stone and the mechanical properties of EPS lightweight concrete.
基金Funded by the Kwang-Hua Fund for College of Civil Engineering,Tongji Universitythe National Natural Science Fundation of China(No.41002093)the National Science and Technology Support Project of China(No.2012BAK24B04)
文摘The mechanical property of a novel expanded polystyrene cement-based material (EPS-C), which was prepared by compressing semi-dry materials molding, was investigated. The compressive behavior was analyzed by compression tests to gain the energy absorbed during failure. Performance for impact resistance was tested by a self-made device. The results figures out that the EPS-C has good toughness and can reach swain of 0.7 without failure. The stress-strain curve is quite different from that of normal EPS concrete. It can be divided into three stages and in the third stage the compressing exhibits the highest energy absorption. With the rising of cement ratio, the impact force absorption (IEA) decreases first and then increases. The impact energy absorption (IEA) increases first and then decreases. The lowest IEA and the highest lEA appear at the cement dosage from 233 g/L to 267 g/L and from 233 g/L to 300 g/L, respectively.
文摘Environmental pollution is a whole world concern. One of the causes of </span><span><span style="font-family:Verdana;">that </span><span style="font-family:Verdana;">pollution</span></span><span><span style="font-family:Verdana;"> is the proliferation of plastic waste. Among these </span><span style="font-family:Verdana;">wastes</span><span style="font-family:Verdana;"> there is expanded </span></span><span style="font-family:Verdana;">polystyrene (EPS), mainly from </span><span style="font-family:Verdana;">packaging</span><span style="font-family:Verdana;">. This study aims to valorize EPS waste by developing a composite material from EPS waste and wood waste. For this purpose, a resin made of EPS has been elaborated by dissolving EPS in acetone. That resin was used as a binder in volume proportions of 15%, 20%, 25% </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> 30% to stabilize the samples. Some of them were thermoformed. The method of elaboration was based on a device consisting of an extruder for mixing the constituents, and a manual press for shaping and compacting the samples. Analyses show that the drying time depends on the composition of the mixture. Increasing the resin content leads to reduce water absorption and porosity of the samples;it also contributes to homogenize the internal structure of the samples. However, for the same resin contents, the thermoformed samples are less porous;they have </span><span style="font-family:Verdana;">more</span><span style="font-family:Verdana;"> homogeneous internal structure</span><span style="font-family:Verdana;">;and</span><span style="font-family:Verdana;"> absorb less water than non-thermoformed samples.
文摘<div style="text-align:justify;"> <span style="font-family:Verdana;">The use of vegetable fibers composites in structures sometimes presents significant fires risks because of their high flammability. This work aims to study the impact of the addition of mineral filler (clay) on the fire behaviour of wood-polystyrene composites and their mechanical properties. Thus, composites containing 25% of expanded polystyrene binder have been produced. On this base material, proportions of clay ranging from 0% to 15% were gradually added. These samples were elaborated by compaction and for some them, submitted to thermoforming after drying. Both kinds of sample were subjected to flame persistence test;flexural strength and compressive strength test were also measured. The results show that composites without mineral filler ignite continuously until the total consumption and when the mineral filler content increases the combustion time decreases. The addition of the mineral filler allows these composites to pass from class M3 of moderately flammable combustible materials to class M2 of hardly flammable materials, according to the M classification of construction and furnishing materials. The measurement of the mechanical properties shows that the strengths increase when the filler content goes from 0% to 10% and then decrease. This leads to set the optimum content of mineral filler around 10%.</span> </div>
文摘This study tackles current environmental challenges by developing innovative and eco-friendly particle boards utilizing sorghum husk, combined with recycled expanded polystyrene (EPS). This dual eco-responsible approach valorizes sorghum husk, often deemed agricultural waste, and repurposes EPS, a plastic waste, thus contributing to CO2 emission reduction and effective waste management. The manufacturing process involves dissolving recycled polystyrene within a solvent to create a binder, which is then mixed with sorghum husk and cold-pressed into composite boards. The study explores the impact of two particle sizes (fine and coarse) and two different concentrations of the recycled EPS binder. Results demonstrate significant variations in the boards’ mechanical properties, displaying a range of Modulus of Rupture (MOR) from 0.84 MPa to 3.85 MPa, and Modulus of Elasticity (MOE) spanning from 658.13 MPa to 1313.25 MPa, influenced by the binder concentration and particle size. These characteristics suggest that the boards can be effectively used in various construction applications, including interior decoration, false ceilings, and potentially for furniture and door manufacturing when combined with appropriate coatings. This study not only exemplifies the valorization of plastic and agricultural wastes but also offers a practical, localized solution to global climate change challenges by promoting sustainable construction materials.
基金The National Key Research and Development Program of China(No.2016YFC0701703)the Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.2016TM045J)the Scientific Innovation Research of Graduate Students in Jiangsu Province(No.KYLX_0151)
文摘The axial bearing capacity of prefabricated composite walls composed of inner and outer concrete wythes,expandable polystyrene(EPS)boards and steel sleeve connectors is investigated.An experimental study on the axial bearing capacity of four prefabricated composite walls after fire treatment is carried out.Two of the prefabricated composite walls are normal-temperature specimens,and the others are treated with fire.The damage modes and crack development are observed,and the axial bearing capacity,lateral deformation of the specimens,and the concrete and reinforcing bar strain are tested.The results show that the ultimate bearing capacity of specimens after a fire is less than that of normal-temperature specimens;when the insulation board thicknesses are 40 mm and 60 mm,the decrease amplitudes are 20.8%and 16.8%,respectively.The maximum lateral deformation of specimens after a fire is greater than that of normal-temperature specimens,and under the same level of load,the lateral deformation increases as the insulation board thickness increases.Moreover,the strain values of the concrete and reinforcing bars of specimens after a fire are greater than those of normal-temperature specimens,and the strain values increase as the thickness of insulation board increases.
文摘In this paper, we investigate the properties of an alternative material for use in marine engineering, namely a rigid and light sandwich-structured composite made of expanded polystyrene and fiberglass. Not only does this material have an improved section modulus, but it is also inexpensive, light, easy to manipulate, and commercially available in various sizes. Using a computer program based on the finite element method, we calculated the hogging and sagging stresses and strains acting on a prismatic boat model composed of this material, and determined the minimum sizes and maximum permissible stresses to avoid deformation. Finally, we calculated the structural weight of the resulting vessel for comparison with another structure of comparable dimensions constructed from the commonly used core material Divinycell.
基金the National Natural Science Foundation of China(No.50708059)
文摘We developed a new structural lightweight concrete by totally or partially replacing coarse and fine aggregates in high performance concrete by expanded polystyrene (EPS) beads. In this work,the sizes of EPS bead were 1.0,2.5 and 6.3 mm. Lightweight EPS concretes with a wide range of concrete densities and compressive strengths were successfully developed. Compressive strength,splitting tensile strength,shrinkage,and water absorption were examined. Additionally,fine silica fume (SF) and polypropylene (PP) fibers were added to improve the mechanical and shrinkage properties of EPS concretes. The results show that fine SF greatly increases the bond strength between the EPS beads and cement paste,thus increasing the compressive strength of EPS concrete. With inclusion of PP fibers,drying shrinkage properties are significantly improved.
基金Project supported by Greece and the European Union(European Social Fund)through the Operational Programme“Human Resources Development,Education,and Lifelong Learning 2014-2020”in the Context of the Project“Strengthening Human Resources Research Potential via Doctorate Research-2nd Cycle”(No.MIS 5000432)。
文摘The vibrations induced by the passage of high-speed trains(HSTs)are considered a crucial issue in the field of environmental and geotechnical engineering.Several wave barriers have been investigated to reduce the detrimental effects of HST-induced vibrations.This study is focused on the potential implementation of an innovative mitigation technique to alleviate the developed vibrations.In particular,the use of expanded polystyrene(EPS)blocks as partial fill material of embankment slopes was examined.The efficiency of the proposed mitigation technique was numerically investigated.More specifically,a 3 D soil-track model was developed to study the cross-section of a railway track,embankment,and the underlying soil layers.The passage of the HST,Thalys,was simulated using a moving load method,and the soil response was calculated at several distances from the track.Several parameters influenced the effectiveness of the examined mitigation measure.Therefore,to ensure an optimal design,a robust procedure is necessary which considers the impact of these factors.Hence,the implementation of EPS blocks on several embankments with different geometry,in terms of height and slope angle,was investigated.
基金the National Natural Science Foundation of China(No.50708059)the Open Fund of Key Laboratory of Advanced Civil Engineering Materials (Tongji University),Ministry of Education (No.K201002)
文摘As the construction of high-rise building to expand the product line of lightweight concrete. becomes popular, improvement and innovation are required In this paper, two ways of fabricating lightweight concrete were combined to make a new kind of super lightweight concrete. Normal aggregate is replaced with expanded polystyrene (EPS) granule, while foam is introduced to facilitate fabrication process. As a result, super lightweight concrete denoted as EPS foamed concrete is fabricated, whose bulk density is less than 500 kg/m3. Compressive properties of EPS foamed concrete with bulk density 300--500 kg/m3 were investigated by stress-strain curve. It's demonstrated that the compressive strength ranges from 0.7 to 2.5 MPa, which is higher than that of similar products. Furthermore, low elastic module and high residual to ultimate strength ratio ensure its excellent deformation and energy absorption capacity. At last, numerical analysis was performed to interpret the inherent variation of elastic modulus and failure mechanism of this material. The results show that EPS foamed concrete is a kind of super lightweight, easy to fabricate material with excellent compressive property and profound utilization potential.
文摘Lightweight geomaterial(LWGM)possesses such merit characteristics as low unit weight,environmental protection(recycling these materials instead of stockpiling them),buffering mechanical property and thermal insulation[1].LWGM,an attractive substitute for earth fills,
基金The authors acknowledge gratefully the provision of an Open Competition CASE studentship award to WAS by the UK Natural Environment Research Council(NERC ref NE/I018352/1).Additional financial support to WAS from Ricardo-AEA is also acknowledged gratefully.The research leading to these results has received funding from the European Union Seventh Framework Programme(FP7/2007e2013)under grant agreement 295138(INTERFLAME).
文摘A series of laboratory experiments were conducted to study emissions of hexabromocyclododecane(HBCDD)into aqueous leaching fluid under simulated landfill conditions.Expanded(EPS)and extruded(XPS)polystyrene building insulation foam samples containing HBCDD were contacted with deionised Milli-Q water containing 0,100 and 1000 mg L1 dissolved humic matter(DHM)as leaching fluid.Concentrations of HBCDD were determined in the resulting fluid and single and serial batch experiments conducted.The impacts on HBCDD concentrations in the leaching fluid temperature and pH were examined.Data from these experiments show that HBCDD concentrations in leaching fluid following contact with EPS and XPS almost all exceeded the aqueous solubilities for each diastereomer and the technical HBCDD formula.This indicates that agitation and abrasion of EPS and XPS were significant mechanisms of HBCDD emission to leaching fluid.Specifically,under such conditions,HBCDD is likely associated with fine abraded particles of the foam and concentrations in the leaching fluid are therefore not limited by the aqueous solubility of HBCDD.Consistent with this,the length of contact time had a significant positive effect on concentrations of all diastereomers in the leaching fluid for XPS and for the least soluble diastereomer,g-HBCDD for EPS.Generally,the presence of DHM in the leaching fluid and elevated leaching fluid temperatures had significant positive effects on HBCDD concentrations in leaching fluid for both EPS and XPS.Overall,while leaching fluids of pH 8.5 significantly enhanced concentrations of a-HBCDD released from EPS,pH exerts a minor effect on concentrations of HBCDD in leaching fluid.
文摘Construction loading before the age of 28 d can have the most significant effects on the slabs, especially for multi-story structures. The changing properties of the young concrete complicate the prediction of serviceability design requirements also. An experimental investigation is performed on four simply supported Light-Weight Concrete (LWC) one-way slabs subjected to immediate loading at 14 d. Effects of aggregate type, loading levels and cracking moment together with the influences of ultimate moment capacity and service moment on the instantaneous deflection of slabs are studied. Comparison of the obtained results with predictions of existing models in the literature shows considerable differences between the recorded and estimated instantaneous deflection of LWC slabs. Based on sensitivity analysis of the effective parameters, a new equation is proposed and verified to predict the instantaneous deflection of LWC slabs subjected to loading at the age of 14 d.