Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,t...Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.展开更多
Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,w...Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.展开更多
To prevent expanded polystyrene (EPS) beads from rising up to the surface in the molding process of EPS lightweight concrete, vibration with pressure was applied and the polyvinyl acetate (PVA) emulsion was adopte...To prevent expanded polystyrene (EPS) beads from rising up to the surface in the molding process of EPS lightweight concrete, vibration with pressure was applied and the polyvinyl acetate (PVA) emulsion was adopted to improve its mechanical properties. The mechanical properties, thermal properties and durability of EPS lightweight concrete were tested. The microstruetures of EPS lightweight concrete were observed by scanning electron microscope (SEM). Vibration with pressure reduces the number of small cracks. The 180 d compressive strength and flexural strength increase obviously as a large amount of PVA was added. The mixed amount of PVA has no obvious influence on the thermal performance when it is not more than 10% of the cement. Vibration with pressure and surface modification of EPS beads by PVA improve the combination of EPS beads with cement stone and the mechanical properties of EPS lightweight concrete.展开更多
The mechanical property of a novel expanded polystyrene cement-based material (EPS-C), which was prepared by compressing semi-dry materials molding, was investigated. The compressive behavior was analyzed by compres...The mechanical property of a novel expanded polystyrene cement-based material (EPS-C), which was prepared by compressing semi-dry materials molding, was investigated. The compressive behavior was analyzed by compression tests to gain the energy absorbed during failure. Performance for impact resistance was tested by a self-made device. The results figures out that the EPS-C has good toughness and can reach swain of 0.7 without failure. The stress-strain curve is quite different from that of normal EPS concrete. It can be divided into three stages and in the third stage the compressing exhibits the highest energy absorption. With the rising of cement ratio, the impact force absorption (IEA) decreases first and then increases. The impact energy absorption (IEA) increases first and then decreases. The lowest IEA and the highest lEA appear at the cement dosage from 233 g/L to 267 g/L and from 233 g/L to 300 g/L, respectively.展开更多
To develop an efficient way to overcome the contradiction among flame retardancy,smoke suppression,and thermal insulation in expanded polystyrene(EPS)foams,which are widely used insulation materials in buildings,a nov...To develop an efficient way to overcome the contradiction among flame retardancy,smoke suppression,and thermal insulation in expanded polystyrene(EPS)foams,which are widely used insulation materials in buildings,a novel"green"porous bio-based flame-retard ant starch(FRS)coating was designed from starch modified with phytic acid(PA)that simultaneously acts as both a flame retardant and an adhesive.This porous FRS coating has open pores,which,in combination with the closed cells formed by EPS beads,create a hierarchically porous structure in FRS-EPS that results in superior thermal insulation with a lower thermal conductivity of 27.0 mW·(m·K)^(-1).The resultant FRS-EPS foam showed extremely low heat-release rates and smoke-production release,indicating excellent fire retardancy and smoke suppression.The specific optical density was as low as 121,which was 80.6%lower than that of neat EPS,at 624.The FRS-EPS also exhibited self-extinguishing behavior in vertical burning tests and had a high limiting oxygen index(LOI)value of 35.5%.More interestingly,after being burnt with an alcohol lamp for 30 min,the top side temperature of the FRS-EPS remained at only 140℃with ignition,thereby exhibiting excellent fire resistance.Mechanism analysis confirmed the intumescent action of FRS,which forms a compact phosphorus-rich hybrid barrier,and the phosphorus-containing compounds that formed in the gas phase contributed to the excellent flame retardancy and smoke suppression of FRS-EPS.This novel porous biomass-based FRS system provides a promising strategy for fabricating polymer foams with excellent flame retardancy,smoke suppression,and thermal insulation.展开更多
基金funding support from National Natural Science Foundation of China(Grant No.52179109)Jiangsu Provincial Natural Science Foundation(Grant No.BK20230967)Open Research Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University(Grant No.KF2022-02).
文摘Existing studies have focused on the behavior of the retaining wall equipped with expanded polystyrene(EPS)geofoam inclusions under semi-infinite surcharge loading rather than limited surcharge loading.In this paper,the failure mode and the earth pressure acting on the rigid retaining wall with EPS geofoam inclusions and granular backfills(henceforth referred to as EPS-wall),under limited surcharge loading are investigated through two-and three-dimensional model tests.The testing results show that different from the sliding of almost all the backfill in the EPS-wall under semi-infinite surcharge loading,only an approximately triangular backfill slides in the wall under limited surcharge loading.The distribution of the lateral earth pressure on the EPS-wall under limited surcharge loading is non-linear,and the distribution changes from the increase of the wall depth to the decrease with the increase of the limited surcharge loading.An approach based on the force equilibrium of a differential element is developed to predict the lateral earth pressure behind the EPS-wall subjected to limited surcharge loading,and its performance was fully validated by the three-dimensional model tests.
基金Project(2012JQ7013)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(QN2012025)supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2011BSJJ084)supported by Research Foundation of Northwest A&F University,China
文摘Deformation characteristics of light weight soil with different EPS (expanded polystyrene) sizes were investigated by consolidation tests.The results show that the confined stress-strain relation curve is in S shape,which has a good homologous relation with e-p curve and e-lgp curve,and three types of curves reflect obvious structural characteristics of light weight soil.When cement mixed ratio and EPS volume ratio are the same for different specimens,structural strength decreases with the increase of EPS size,but compressibility indexes basically keep unchanged within the structural strength.The settlement of light weight soil can be divided into instantaneous settlement and primary consolidation settlement.It has no obvious rheology property,and 90% of total consolidation deformation can be finished in 1 min.Settlement-time relation of light weight soil can be predicted by the hyperbolic model.S-lgt curve of light weight soil is not in anti-S shape.It is proved that there is no secondary consolidation section,so consolidation coefficient cannot be obtained by time logarithm method.Structural strength and unit price decrease with the increase of EPS size,but the reducing rate of the structural strength is lower than that of the unit price,so the cost of mixed soil can be reduced by increasing the EPS size.The EPS beads with 3-5 mm in diameter are suggested to be used in the construction process,and the prescription of mixed soil can be optimized.
基金Supported by Tianjin Natural Science Foundation (No.06YFJMJC05900)Science and Technology Key Project of Hebei Province (No.05213810)
文摘To prevent expanded polystyrene (EPS) beads from rising up to the surface in the molding process of EPS lightweight concrete, vibration with pressure was applied and the polyvinyl acetate (PVA) emulsion was adopted to improve its mechanical properties. The mechanical properties, thermal properties and durability of EPS lightweight concrete were tested. The microstruetures of EPS lightweight concrete were observed by scanning electron microscope (SEM). Vibration with pressure reduces the number of small cracks. The 180 d compressive strength and flexural strength increase obviously as a large amount of PVA was added. The mixed amount of PVA has no obvious influence on the thermal performance when it is not more than 10% of the cement. Vibration with pressure and surface modification of EPS beads by PVA improve the combination of EPS beads with cement stone and the mechanical properties of EPS lightweight concrete.
基金Funded by the Kwang-Hua Fund for College of Civil Engineering,Tongji Universitythe National Natural Science Fundation of China(No.41002093)the National Science and Technology Support Project of China(No.2012BAK24B04)
文摘The mechanical property of a novel expanded polystyrene cement-based material (EPS-C), which was prepared by compressing semi-dry materials molding, was investigated. The compressive behavior was analyzed by compression tests to gain the energy absorbed during failure. Performance for impact resistance was tested by a self-made device. The results figures out that the EPS-C has good toughness and can reach swain of 0.7 without failure. The stress-strain curve is quite different from that of normal EPS concrete. It can be divided into three stages and in the third stage the compressing exhibits the highest energy absorption. With the rising of cement ratio, the impact force absorption (IEA) decreases first and then increases. The impact energy absorption (IEA) increases first and then decreases. The lowest IEA and the highest lEA appear at the cement dosage from 233 g/L to 267 g/L and from 233 g/L to 300 g/L, respectively.
基金financially supported by the National Natural Science Foundation of China(51827803,51320105011,51790504,and 51721091)the Young Elite Scientists Sponsorship Program by CASTFundamental Research Funds for the Central Universities。
文摘To develop an efficient way to overcome the contradiction among flame retardancy,smoke suppression,and thermal insulation in expanded polystyrene(EPS)foams,which are widely used insulation materials in buildings,a novel"green"porous bio-based flame-retard ant starch(FRS)coating was designed from starch modified with phytic acid(PA)that simultaneously acts as both a flame retardant and an adhesive.This porous FRS coating has open pores,which,in combination with the closed cells formed by EPS beads,create a hierarchically porous structure in FRS-EPS that results in superior thermal insulation with a lower thermal conductivity of 27.0 mW·(m·K)^(-1).The resultant FRS-EPS foam showed extremely low heat-release rates and smoke-production release,indicating excellent fire retardancy and smoke suppression.The specific optical density was as low as 121,which was 80.6%lower than that of neat EPS,at 624.The FRS-EPS also exhibited self-extinguishing behavior in vertical burning tests and had a high limiting oxygen index(LOI)value of 35.5%.More interestingly,after being burnt with an alcohol lamp for 30 min,the top side temperature of the FRS-EPS remained at only 140℃with ignition,thereby exhibiting excellent fire resistance.Mechanism analysis confirmed the intumescent action of FRS,which forms a compact phosphorus-rich hybrid barrier,and the phosphorus-containing compounds that formed in the gas phase contributed to the excellent flame retardancy and smoke suppression of FRS-EPS.This novel porous biomass-based FRS system provides a promising strategy for fabricating polymer foams with excellent flame retardancy,smoke suppression,and thermal insulation.