期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Fabrication and Compressive Properties of Expanded Polystyrene Foamed Concrete:Experimental Research and Modeling 被引量:1
1
作者 吴震 陈兵 刘宁 《Journal of Shanghai Jiaotong university(Science)》 EI 2013年第1期61-69,共9页
As the construction of high-rise building to expand the product line of lightweight concrete. becomes popular, improvement and innovation are required In this paper, two ways of fabricating lightweight concrete were c... As the construction of high-rise building to expand the product line of lightweight concrete. becomes popular, improvement and innovation are required In this paper, two ways of fabricating lightweight concrete were combined to make a new kind of super lightweight concrete. Normal aggregate is replaced with expanded polystyrene (EPS) granule, while foam is introduced to facilitate fabrication process. As a result, super lightweight concrete denoted as EPS foamed concrete is fabricated, whose bulk density is less than 500 kg/m3. Compressive properties of EPS foamed concrete with bulk density 300--500 kg/m3 were investigated by stress-strain curve. It's demonstrated that the compressive strength ranges from 0.7 to 2.5 MPa, which is higher than that of similar products. Furthermore, low elastic module and high residual to ultimate strength ratio ensure its excellent deformation and energy absorption capacity. At last, numerical analysis was performed to interpret the inherent variation of elastic modulus and failure mechanism of this material. The results show that EPS foamed concrete is a kind of super lightweight, easy to fabricate material with excellent compressive property and profound utilization potential. 展开更多
关键词 expanded polystyrene (EPS) foamed concrete compressive property stress-strain curve
原文传递
An Effective Green Porous Structural Adhesive for Thermal Insulating,Flame-Retardant,and Smoke-Suppressant Expandable Polystyrene Foam
2
作者 Meng-En Li Hai-Bo Zhao +4 位作者 Jin-Bo Cheng Ting Wang Teng Fu Ai-Ning Zhang Yu-Zhong Wang 《Engineering》 SCIE EI CAS 2022年第10期151-160,共10页
To develop an efficient way to overcome the contradiction among flame retardancy,smoke suppression,and thermal insulation in expanded polystyrene(EPS)foams,which are widely used insulation materials in buildings,a nov... To develop an efficient way to overcome the contradiction among flame retardancy,smoke suppression,and thermal insulation in expanded polystyrene(EPS)foams,which are widely used insulation materials in buildings,a novel"green"porous bio-based flame-retard ant starch(FRS)coating was designed from starch modified with phytic acid(PA)that simultaneously acts as both a flame retardant and an adhesive.This porous FRS coating has open pores,which,in combination with the closed cells formed by EPS beads,create a hierarchically porous structure in FRS-EPS that results in superior thermal insulation with a lower thermal conductivity of 27.0 mW·(m·K)^(-1).The resultant FRS-EPS foam showed extremely low heat-release rates and smoke-production release,indicating excellent fire retardancy and smoke suppression.The specific optical density was as low as 121,which was 80.6%lower than that of neat EPS,at 624.The FRS-EPS also exhibited self-extinguishing behavior in vertical burning tests and had a high limiting oxygen index(LOI)value of 35.5%.More interestingly,after being burnt with an alcohol lamp for 30 min,the top side temperature of the FRS-EPS remained at only 140℃with ignition,thereby exhibiting excellent fire resistance.Mechanism analysis confirmed the intumescent action of FRS,which forms a compact phosphorus-rich hybrid barrier,and the phosphorus-containing compounds that formed in the gas phase contributed to the excellent flame retardancy and smoke suppression of FRS-EPS.This novel porous biomass-based FRS system provides a promising strategy for fabricating polymer foams with excellent flame retardancy,smoke suppression,and thermal insulation. 展开更多
关键词 Biomass porous coating expanded polystyrene foam Low thermal conductivity Flame retardancy Smoke suppression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部