The exponentially expanded space grid was incorporated into the network approach to overcome the problem of low simulation efficiency during the simulations of electrochemical problems with stiff kinetics or wide disp...The exponentially expanded space grid was incorporated into the network approach to overcome the problem of low simulation efficiency during the simulations of electrochemical problems with stiff kinetics or wide dispersion of diffusion coefficients, resulting in an effective electrochemical simulation method: exponentially expanded grid network approach (EEGNA). The stability and accuracy of the EEGNA for the simulation of various electrode processes coupled with different types of homogeneous reactions were investigated.展开更多
文摘The exponentially expanded space grid was incorporated into the network approach to overcome the problem of low simulation efficiency during the simulations of electrochemical problems with stiff kinetics or wide dispersion of diffusion coefficients, resulting in an effective electrochemical simulation method: exponentially expanded grid network approach (EEGNA). The stability and accuracy of the EEGNA for the simulation of various electrode processes coupled with different types of homogeneous reactions were investigated.