The maximum principle is applied to prove the Harnack estimate of curvature flows of hypersurfaces in Rn+1,where the normal velocity is given by a smooth function f depending only on the mean curvature.By use of the ...The maximum principle is applied to prove the Harnack estimate of curvature flows of hypersurfaces in Rn+1,where the normal velocity is given by a smooth function f depending only on the mean curvature.By use of the estimate,some corollaries are obtained including the integral Harnack inequality.In particular,the conditions are given with which the solution to the flows is a translation soliton or an expanding soliton.展开更多
文摘The maximum principle is applied to prove the Harnack estimate of curvature flows of hypersurfaces in Rn+1,where the normal velocity is given by a smooth function f depending only on the mean curvature.By use of the estimate,some corollaries are obtained including the integral Harnack inequality.In particular,the conditions are given with which the solution to the flows is a translation soliton or an expanding soliton.