The corrosion behavior of expandable tubular materials was investigated in simulated downhole formation water environments using a series of electrochemical techniques. The corrosion morphologies in the real downhole ...The corrosion behavior of expandable tubular materials was investigated in simulated downhole formation water environments using a series of electrochemical techniques. The corrosion morphologies in the real downhole environment after three months of application were also observed by stereology microscopy and scanning electron microscopy (SEM). The results show that, compared with the unex- panded sample, the area of ferfite increases dramatically after a 7.09% expansion. The expanded material shows a higher corrosion current in the polarization curve and a lower corrosion resistance in the electrochemical impedance spectroscopy (EIS) plot at every studied tempera- ture. The determined critical pitting temperatures (CPT) before and after expansion are 87.5℃and 79.2℃, respectively. SEM observations demonstrate stress corrosion cracks, and CO2 corrosion and H2S corrosion also occur in the downhole environment. Due to additional defects generated during the plastic deformation, the corrosion performance of the expanded tubing deteriorates.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51222106)the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-14-011C1)
文摘The corrosion behavior of expandable tubular materials was investigated in simulated downhole formation water environments using a series of electrochemical techniques. The corrosion morphologies in the real downhole environment after three months of application were also observed by stereology microscopy and scanning electron microscopy (SEM). The results show that, compared with the unex- panded sample, the area of ferfite increases dramatically after a 7.09% expansion. The expanded material shows a higher corrosion current in the polarization curve and a lower corrosion resistance in the electrochemical impedance spectroscopy (EIS) plot at every studied tempera- ture. The determined critical pitting temperatures (CPT) before and after expansion are 87.5℃and 79.2℃, respectively. SEM observations demonstrate stress corrosion cracks, and CO2 corrosion and H2S corrosion also occur in the downhole environment. Due to additional defects generated during the plastic deformation, the corrosion performance of the expanded tubing deteriorates.