Conversion of the Reed–Muller(RM) expansion between two different polarities is an important step in the synthesis and optimization of RM circuits. By investigating XOR decomposition, a new conversion algorithm is ...Conversion of the Reed–Muller(RM) expansion between two different polarities is an important step in the synthesis and optimization of RM circuits. By investigating XOR decomposition, a new conversion algorithm is proposed to convert MPRM expansion from one polarity to another. First, the relationship between XOR decomposition and mixed polarity is set up. Second, based on this, the operation relation of term coefficients between the two polarities is derived to realize MPRM expansion conversion. And finally, with the MCNC Benchmark, the resultsofouralgorithmshowthatitismoresuitablefordealingwithMPRMexpansionwithmoreterms.Compared to the previous tabular technique, the conversion efficiency is improved up to approximately 44.39%.展开更多
Unmanned aerial vehicle base stations(UAV-BSs)can provide a fast network deployment scheme for heterogeneous networks.However,unmanned aerial vehicle(UAV)has limited capability and cannot assist the base station(BS)we...Unmanned aerial vehicle base stations(UAV-BSs)can provide a fast network deployment scheme for heterogeneous networks.However,unmanned aerial vehicle(UAV)has limited capability and cannot assist the base station(BS)well.The ability of a UAV to assist the BSs is limited,and the cluster deployment relies on the leading UAV.The dispersive deployment of multiple UAVs(multi-UAVs)need a macro base station(MBS)to determine their positions to prevent collisions or interference.Therefore,a distributed cooperative deployment scheme is proposed for UAVs to solve this problem.The scheme can increase the ability of UAVs to assist users and reduce the pressure on BSs to deploy UAVs.Firstly,the randomly distributed users are pre-clustered.Then the placement problem was modeled as a circle expansion problem and a pre-clustering radius expansion algorithm was proposed.Under the constraint of users'data rates,it provides services for more users.Finally,the proposed algorithm was compared with the density-aware placement algorithm.The simulation results show that the proposed algorithm can provide services for more users and improve the coverage rate of users while ensuring the data rates.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.61076032,61234002)the Natural Science Foundation of Zhejiang Province(Nos.Z1111219,LY12D06002,LY13F040003)K.C.Wong Magna Fund in Ningbo University
文摘Conversion of the Reed–Muller(RM) expansion between two different polarities is an important step in the synthesis and optimization of RM circuits. By investigating XOR decomposition, a new conversion algorithm is proposed to convert MPRM expansion from one polarity to another. First, the relationship between XOR decomposition and mixed polarity is set up. Second, based on this, the operation relation of term coefficients between the two polarities is derived to realize MPRM expansion conversion. And finally, with the MCNC Benchmark, the resultsofouralgorithmshowthatitismoresuitablefordealingwithMPRMexpansionwithmoreterms.Compared to the previous tabular technique, the conversion efficiency is improved up to approximately 44.39%.
基金supported by the National Natural Science Foundation of China(61771070,61671088)。
文摘Unmanned aerial vehicle base stations(UAV-BSs)can provide a fast network deployment scheme for heterogeneous networks.However,unmanned aerial vehicle(UAV)has limited capability and cannot assist the base station(BS)well.The ability of a UAV to assist the BSs is limited,and the cluster deployment relies on the leading UAV.The dispersive deployment of multiple UAVs(multi-UAVs)need a macro base station(MBS)to determine their positions to prevent collisions or interference.Therefore,a distributed cooperative deployment scheme is proposed for UAVs to solve this problem.The scheme can increase the ability of UAVs to assist users and reduce the pressure on BSs to deploy UAVs.Firstly,the randomly distributed users are pre-clustered.Then the placement problem was modeled as a circle expansion problem and a pre-clustering radius expansion algorithm was proposed.Under the constraint of users'data rates,it provides services for more users.Finally,the proposed algorithm was compared with the density-aware placement algorithm.The simulation results show that the proposed algorithm can provide services for more users and improve the coverage rate of users while ensuring the data rates.