Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle frac...Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures.展开更多
Polypropylene fiber and expansive agent are used in airport concrete to improve its shrinkage cracking resistance and mechanical properties.The concrete specimens with amount content of polypropylene fiber or expansiv...Polypropylene fiber and expansive agent are used in airport concrete to improve its shrinkage cracking resistance and mechanical properties.The concrete specimens with amount content of polypropylene fiber or expansive agent or both of them are prepared.The morphology of specimens is observed by scanning electron microscope,the time when the first crack occurred is recorded through slap test,and the mechanical properties such as compressive strength and impact energies of concrete are measured.The results show that polypropylene fiber in concrete can reduce the shrinkage and delay the first crack,improve the impact resistance obviously,and improve the compressive strength slightly.Expansive agent can compensate the shrinkage and reduce cracks of concrete pavement markedly,and improve the mechanical properties of concrete pavement slightly.The study provides recommendations for cracking control of airport concrete pavement in the future.展开更多
Time-to-cracking of the concrete cover induced by the steel corrosion is one of the critical problems faced by engineers, operators and asset managers in making strategies for the maintenance and repairs of reinforced...Time-to-cracking of the concrete cover induced by the steel corrosion is one of the critical problems faced by engineers, operators and asset managers in making strategies for the maintenance and repairs of reinforced concrete (RC) structures affected by corrosion. In this paper, a theoretical model for predicting the time-to-cracking is derived by assuming the bond between the steel bar and the concrete as a linear combination of perfectly smooth and bonded. The model takes into account the characteristics of existing exiguous flaws and initial cracks in the concrete before the load acting on RC structures. The validity of the proposed model is prehminarily verified by comparing the obtained results with the available experimental results. A remarkable advantage of the proposed method is its apphcation to the prediction of the service life of RC structures, made of the deformed steel bars as well as the round bars. By determining an experimental constant a, which is related to the interface bond state between the steel bar and the concrete, the service life of RC structures can be predicted using the proposed scheme. Analysis of major factors affecting the time-to-cracking demonstrates that the length of the initial crack affects the service life of RC structures significantly. Moreover, the larger cover thickness and the smaller diameter of the steel bar within a certain range are beneficial to prolonging the time-to-cracking.展开更多
A chemo-damage model for cracking analysis of concrete dams affected by alkali-aggregate reaction (AAR) is proposed, which combines the plastic-damage model for concrete with the AAR kinetics law. The chemo-damage mod...A chemo-damage model for cracking analysis of concrete dams affected by alkali-aggregate reaction (AAR) is proposed, which combines the plastic-damage model for concrete with the AAR kinetics law. The chemo-damage model is first verified by a stress-free AAR expansion test. The expansion deformation obtained from the simulation is in good agreement with the measurement, demonstrating that the proposed model has a sufficient accuracy to predict the expansion of AAR-affected concrete. Subsequently, the expansion deformation and cracking process of the AAR-affected Fontana gravity dam is analyzed. It shows that permanent displacements in the upstream direction and the vertical direction are gradually increased during the long-term operation period, and that their maximal values reach 1.6 and 3.6 cm, respectively. A crack is observed on the wall in the foundation drainage gallery, and extends towards the downstream face of the dam. With the further development of AAR, another crack forms on the downstream face, and then intersects with the gallery crack to penetrate the downstream side profile of the dam. The third crack occurs in the upstream side wall of the gallery and propagates a short distance towards the upstream face of the dam. The simulated cracking pattern in the dam due to AAR is similar to the in situ observation.展开更多
基金the National Natural Science Foundation of China(Qing Zhang,Nos.11932006,U1934206,12172121)the Fundamental Research Funds for the Central Universities(Xin Gu,No.B210201031).
文摘Accurate simulation of the cracking process caused by rust expansion of reinforced concrete(RC)structures plays an intuitive role in revealing the corrosion-induced failure mechanism.Considering the quasi-brittle fracture of concrete,the fracture phase field driven by the compressive-shear term is constructed and added to the traditional brittle fracture phase field model.The rationality of the proposed model is verified by a mixed fracture example under a shear displacement load.Then,the extended fracture phase model is applied to simulate the corrosion-induced cracking process of RC.The cracking patterns caused by non-uniform corrosion expansion are discussed for RC specimens with homogeneous macroscopically or heterogeneous with different polygonal aggregate distributions at the mesoscopic scale.Then,the effects of the protective layer on the crack propagation trajectory and cracking resistance are investigated,illustrating that the cracking angle and cracking resistance increase with the increase of the protective layer thickness,consistent with the experimental observation.Finally,the corrosion-induced cracking process of concrete specimens with large and small spacing rebars is simulated,and the interaction of multiple corrosion cracking is easily influenced by the reinforcement spacing,which increases with the decrease of the steel bar interval.These conclusions play an important role in the design of engineering anti-corrosion measures.The fracture phase field model can provide strong support for the life assessment of RC structures.
基金Supported by the High-Level Talent Funding and Construction System of Jiangsu Province(JZ-010,2013ZD12)the China Post-Doctoral Science Foundation(2014M551588,1301057B)the National High-Tech Research and Development Program of China("863"Program)(2009AA03Z508)
文摘Polypropylene fiber and expansive agent are used in airport concrete to improve its shrinkage cracking resistance and mechanical properties.The concrete specimens with amount content of polypropylene fiber or expansive agent or both of them are prepared.The morphology of specimens is observed by scanning electron microscope,the time when the first crack occurred is recorded through slap test,and the mechanical properties such as compressive strength and impact energies of concrete are measured.The results show that polypropylene fiber in concrete can reduce the shrinkage and delay the first crack,improve the impact resistance obviously,and improve the compressive strength slightly.Expansive agent can compensate the shrinkage and reduce cracks of concrete pavement markedly,and improve the mechanical properties of concrete pavement slightly.The study provides recommendations for cracking control of airport concrete pavement in the future.
基金supported by the National Natural Science Foundation of China (Grant No.50178003)
文摘Time-to-cracking of the concrete cover induced by the steel corrosion is one of the critical problems faced by engineers, operators and asset managers in making strategies for the maintenance and repairs of reinforced concrete (RC) structures affected by corrosion. In this paper, a theoretical model for predicting the time-to-cracking is derived by assuming the bond between the steel bar and the concrete as a linear combination of perfectly smooth and bonded. The model takes into account the characteristics of existing exiguous flaws and initial cracks in the concrete before the load acting on RC structures. The validity of the proposed model is prehminarily verified by comparing the obtained results with the available experimental results. A remarkable advantage of the proposed method is its apphcation to the prediction of the service life of RC structures, made of the deformed steel bars as well as the round bars. By determining an experimental constant a, which is related to the interface bond state between the steel bar and the concrete, the service life of RC structures can be predicted using the proposed scheme. Analysis of major factors affecting the time-to-cracking demonstrates that the length of the initial crack affects the service life of RC structures significantly. Moreover, the larger cover thickness and the smaller diameter of the steel bar within a certain range are beneficial to prolonging the time-to-cracking.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51209120, 41274106 and 40974063)
文摘A chemo-damage model for cracking analysis of concrete dams affected by alkali-aggregate reaction (AAR) is proposed, which combines the plastic-damage model for concrete with the AAR kinetics law. The chemo-damage model is first verified by a stress-free AAR expansion test. The expansion deformation obtained from the simulation is in good agreement with the measurement, demonstrating that the proposed model has a sufficient accuracy to predict the expansion of AAR-affected concrete. Subsequently, the expansion deformation and cracking process of the AAR-affected Fontana gravity dam is analyzed. It shows that permanent displacements in the upstream direction and the vertical direction are gradually increased during the long-term operation period, and that their maximal values reach 1.6 and 3.6 cm, respectively. A crack is observed on the wall in the foundation drainage gallery, and extends towards the downstream face of the dam. With the further development of AAR, another crack forms on the downstream face, and then intersects with the gallery crack to penetrate the downstream side profile of the dam. The third crack occurs in the upstream side wall of the gallery and propagates a short distance towards the upstream face of the dam. The simulated cracking pattern in the dam due to AAR is similar to the in situ observation.