The main aim of the paper is to present (and at the same time offer) a differ-ent perspective for the analysis of the accelerated expansion of the Universe. A perspective that can surely be considered as being “in pa...The main aim of the paper is to present (and at the same time offer) a differ-ent perspective for the analysis of the accelerated expansion of the Universe. A perspective that can surely be considered as being “in parallel” to the tradition-al ones, such as those based, for example, on the hypotheses of “Dark Matter” and “Dark Energy”, or better as a “com-possible” perspective, because it is not understood as being “exclusive”. In fact, it is an approach that, when con-firmed by experimental results, always keeps its validity from an “operative” point of view. This is because, in analogy to the traditional perspectives, on the basis of Popper’s Falsification Principle the corresponding “Generative” Logic on which it is based has not the property of the perfect induction. The basic difference then only consists in the fact that the Evolution of the Universe is now modeled by considering the Universe as a Self-Organizing System, which is thus analyzed in the light of the Maximum Ordinality Principle.展开更多
The paper considers cosmological objects belonging to fundamentally different classes that do not intersect with each other. Firstly, these are objects that make up a pure Hubble stream. Secondly, these are objects th...The paper considers cosmological objects belonging to fundamentally different classes that do not intersect with each other. Firstly, these are objects that make up a pure Hubble stream. Secondly, these are objects that have constant proper distances. These include planets, stars, and galaxies in gravitationally coupled systems. They all do not participate in the Hubble stream as independent objects. It is shown that the commoving reference system and proper reference system standardly used in cosmology change places with each other when switching from considering Hubble objects to “planets”. The features of the evolution (more precisely, devolution, degradation, reverse development) of the latter were analyzed and it was found that the cosmological acceleration of all “planets”, in contrast to Hubble objects, coincides in order of magnitude with the fundamental value of <em>H</em><sup><em>2</em></sup><em>R</em>. As applied to the Pioneers anomaly, this approach allowed us to obtain the calculated value of cosmological acceleration, which coincides in order of magnitude with the observed value. It seems that this approach is applicable also to other local gravitationally coupled systems and allows us to explain the characteristic flattened shape of the orbital curves of stars and galaxies by the fact that the influence of the fundamental cosmological acceleration <em>H</em><sup><em>2</em></sup><em>R</em> is added to the system’s own gravitational field.展开更多
The commonly accepted view is that the Universe is currently in the dark energy dominance era (estimated to start about 5 billion years ago)—the era where yet unknown dark energy dominates over the gravitation and is...The commonly accepted view is that the Universe is currently in the dark energy dominance era (estimated to start about 5 billion years ago)—the era where yet unknown dark energy dominates over the gravitation and is responsible for the observed acceleration of the Universe expansion. In the present paper, we consider a “gas” of a large number of gravitating neutral nonrelativistic particles having a practically infinite lifetime and zero or very little interaction with the rest of the matter (neutrinos could be an example). One of the central points is the application of Dirac’s Generalized Hamiltonian Dynamics to pairs of these particles. Another central point is the application of the virial theorem to pairs of zero total energy. We demonstrate that as a result, the gravitational interaction within the entire system effectively decreases. Together with the observational fact of the Universe rotation (according to Shamir’s study of 2020), this model provides a possible explanation of the entire history of the Universe expansion: both the era of the decelerating expansion and the current era of the accelerated expansion.展开更多
The component of light in the 3<sup>rd</sup> dimension decreases as light enters the 4<sup>th</sup> dimension created by a Black Hole. Hence particles moving in 3-D space will emit radiation du...The component of light in the 3<sup>rd</sup> dimension decreases as light enters the 4<sup>th</sup> dimension created by a Black Hole. Hence particles moving in 3-D space will emit radiation due to the Cherenkov Effect. Gravity and acceleration are the same according to Einstein’s Equivalence Principle. Density also has the same effect as gravity because gravity attracts matter thereby increasing matter density. The laws of Physics and all the constants of nature such as the Speed of light, Planck’s constant, the Gravitational constant, and so on are a function of the dimension of the space they are in since the vacuum energy density of each higher dimension is greater. We analyze the graph of the accelerated expansion of the Universe to calculate the acceleration for small Redshift z and predict what will happen for larger z values.展开更多
The two principal contributors to the Hubble tension problem are the predictions of the baryonic acoustic oscillation model and the H<sub>0</sub> parameter fit of the “Tip of the Red Giant Branch” collab...The two principal contributors to the Hubble tension problem are the predictions of the baryonic acoustic oscillation model and the H<sub>0</sub> parameter fit of the “Tip of the Red Giant Branch” collaboration. In this paper, we show that the former is neither necessary nor possible and that the latter yields a value in agreement with the supernovae results when adjustments are made for errors in the peculiar velocity model used to isolate the recession velocities of galaxies. We also make comparisons between the predictions of our new model of cosmology and the curve fits of the standard model. For values of redshift ≤ 1 we find that, with a Hubble constant of H<sub>0</sub> = 73, the two agree almost exactly. We resolve the Hubble constant problem and validate the new model predictions for small redshifts.展开更多
In the common theory of the Universe, the redshift of the light wavelength from distant stars indicates the speed of the star. In this study, the model of the Universe is the surface volume of the four-dimensional sph...In the common theory of the Universe, the redshift of the light wavelength from distant stars indicates the speed of the star. In this study, the model of the Universe is the surface volume of the four-dimensional sphere, and the shape of the Universe results in the most of the redshift of light wavelength. Therefore, there is no dark energy accelerating the Universe. The surface of the four-dimensional sphere is a volume, and this volume is a good model for the Universe. The surface volume of the four-dimensional sphere has been explained by a model of four-dimensional cube, within which the forming of surface volume can be easily shown. The model of four-dimensional cube containing six side cubes is ingenious for explaining the structure of the four-dimensional Universe, but it is not enough because the four-dimensional cube has not six side cubes, but eight side cubes. Therefore, in this study a better method has been created to construct the four-dimensional cube. Our three-dimensional Universe is the surface of the four-dimensional sphere Universe. The volume of our three-dimensional Universe is finite, and beneath it is the infinite volume four-dimensional Super Universe. Two important basic formulae have been derived: The surface volume of the four-dimensional sphere is π<sup>3</sup>R<sup>3</sup> in which R is the radius of the sphere, and the fourth-power volume of the four-dimensional sphere is 1/4 π<sup>3</sup>R<sup>4</sup>. The volume of the Universe has been calculated π<sup>3</sup>R<sup>3</sup> = 62 × 10<sup>30</sup> ly<sup>3</sup>. Time as the fourth dimension of the space takes effect only near the speed of light, and therefore it has been ignored in this study.展开更多
The article formulates the main principle of physics, which underlies this science. This principle has been called by the author of this article the Principle of differentiation into physical and mathematical theories...The article formulates the main principle of physics, which underlies this science. This principle has been called by the author of this article the Principle of differentiation into physical and mathematical theories. The article gives examples of the application of this principle in quantum mechanics and cosmology. A more detailed proof of the principle of equivalence of the electromagnetic field and the field of strong interaction to a free material particle is given. This principle, formulated in the article “Electrodynamics in Curvilinear Coordinates and the Equation of a Geodesic Line”, revealed the nature of the mass of elementary particles and became the basis for the formulation of the Principle of differentiation into physical and mathematical theories.展开更多
We present a Quantum Space Model (QSM) of cosmic evolution based on the theory that space consists of energy quanta from which our universe came about. We used the Friedmann equations to trace its history and predict ...We present a Quantum Space Model (QSM) of cosmic evolution based on the theory that space consists of energy quanta from which our universe came about. We used the Friedmann equations to trace its history and predict its ultimate fate. Results provide further support to our recent proposal that the accelerating expansion of the universe is due to a scalar space field which has become known as Dark Energy. In our model, the universe started from high energy space quanta which were triggered by quantum fluctuations that caused the Big Bang. It then expanded and cooled undergoing phase transitions to radiation, fundamental particles, and matter. Matter agglomerated and grew into stars, galaxies, etc. and was eventually consolidated by gravity into Black Holes, which finally ended in a Big Crunch in a state of deep freeze inside the Black hole at 1.380 trillion years. Fluctuations, quantum tunneling, or some other mechanisms caused a new Bang to start another cycle in its life. Our results are in good agreement with the theoretical predictions of a cyclic universe by Steinhardt and his associates, and by Penrose. Space and energy are equivalent as embodied in the Planck energy equation. They give rise to the two principal long range forces in the universe: the gravitational force and the space force. The latter may be the fifth force in the universe. The two forces could provide the clockwork mechanism operating our cyclic universe. If the Law of Conservation of Energy is universal, then the cosmos is eternal.展开更多
The Current Standard Model of the Universe asserts that the universe is generated from a single Big Bang event followed by inflation. There is no center to this universe, hence, no preferential reference frame to desc...The Current Standard Model of the Universe asserts that the universe is generated from a single Big Bang event followed by inflation. There is no center to this universe, hence, no preferential reference frame to describe the motions of celestial objects. We propose a new, Shell Model of the Universe, which contends that the universe is created from multiple, concentric big bangs. Accordingly, that origin presents itself as a unique, preferential reference frame, which furnishes the simplest description of the motions of galaxies in the cosmos. This is similar in manner to how planetary motion is more straightforwardly described via a sun-centered Solar System rather than an earth-centered one. The appeal of the Shell Model of the Universe lies in its simplistic ability to resolve the paradox of quasars, explain the variability in Hubble’s Constant, and solve the problematic accelerated expansion of the universe.展开更多
The speed away of stars and galaxies is traditionally calculated from the relativistic formula according to the measurement of the redshift. It is demonstrated here another formula for this speed away of stars and gal...The speed away of stars and galaxies is traditionally calculated from the relativistic formula according to the measurement of the redshift. It is demonstrated here another formula for this speed away of stars and galaxies, from this same redshift <em>z</em>. After having exposed critiques on the demonstration and the relativistic use which require the assumption of an expanding universe by itself, it is proposed within the framework of neo-Newtonian mechanics the formula <img src="Edit_5abcd41b-f0f0-4fdd-8d05-07b43d1fa78c.png" alt="" /> where <em>V</em> is the speed from the source. This formula has the double characteristic of being equivalent to relativistic predictions for low redshifts, but of deviating from them by up to 17% for high redshifts. It is consistent with the observation of the anisotropy of the Universe and the Cosmic Microwave Background. It helps to explain Pioneer anomalies. It is compatible with the constancy in the majority of cases of interference phenomena. Finally, it provides a new analysis grid for the observation of supernovae, galaxies and distant pulsars, thus opening up new fields of research on the increase in distances attributed to dark energy and also in other areas of the cosmology.展开更多
The Lambda Cold Dark Matter (ΛCDM) model is currently the best model to describe the development of the Universe from the Big Bang to the present time. It is composed of six parameters, two of them, Dark Energy (DE) ...The Lambda Cold Dark Matter (ΛCDM) model is currently the best model to describe the development of the Universe from the Big Bang to the present time. It is composed of six parameters, two of them, Dark Energy (DE) and CDM, with unknown physical explanations. DE, leading to accelerated expansion of the Universe, is considered a scalar field characterized by exerting its force by repulsive gravity. We examined whether DE can be explained as the warping of spacetime in our Universe by external universes as components of a Multiverse or, in other words, as the gravitational pull exerted by other universes. The acceleration, the resultant kinetic energy, E<sub>kin</sub>, and the cosmological constant, Λ, were calculated for one to four external universes. The acceleration is approx. 10<sup>-11</sup> m/s<sup>2</sup>, which is in agreement with observations. Its value is dependent upon the numbers and relative positions of external universes. DE density is approx. 10<sup>-29</sup> kg/m<sup>3</sup> and Λ is in the range of 10<sup>-38</sup> s<sup>-2</sup> and 10<sup>-55</sup> m<sup>-2</sup>, respectively. Warping of spacetime by external universes as a physical explanation for DE seems feasible and warrants further considerations.展开更多
This paper suggests explanations for otherwise seemingly unexplained data about elementary particles and cosmology. The explanations have bases in coordinate-based modeling and in integer-based characterizations for s...This paper suggests explanations for otherwise seemingly unexplained data about elementary particles and cosmology. The explanations have bases in coordinate-based modeling and in integer-based characterizations for some catalogs. One catalog features properties—including charge, mass, and angular momentum—of objects. Another catalog features all known and some possible elementary particles. Assumptions include that multipole-expansion mathematics has uses regarding long-range interactions, such as gravity, and that nature includes six isomers of all elementary particles other than long-range-interaction bosons. One isomer associates with ordinary matter. Five isomers are associated with dark matter. Multipole notions help explain large-scale aspects such as the rate of expansion of the universe.展开更多
The theory here developed, makes use of the decomposition of matter (mass) in different spatial frequencies k’s using spatial Fourier transforms, and the posterior use of modified inverse Fourier transforms to constr...The theory here developed, makes use of the decomposition of matter (mass) in different spatial frequencies k’s using spatial Fourier transforms, and the posterior use of modified inverse Fourier transforms to construct an accurate description of the classical Newtonian gravitational field. Introducing the concept of quantization of the spatial frequency <em>k</em>, which means allowing only discrete values, such as <em>k<sub>m</sub></em>, 2<em>k<sub>m</sub></em>, 3<em>k<sub>m</sub></em>, leads to the appearance of extra gravitational force regions that occur at distances equally spaced apart in 2π/<em>k<sub>m</sub></em>. These areas of extra gravitational force decrease inscribed in an inverse of the distance envelope (1/<em>r</em>). The value of 2π/<em>k<sub>m</sub></em> can be adjusted to be of the order of kiloparsec (kpc), being this way a plausible explanation for the effect of the dark matter since this causes practically flat rotation curves for most of the galaxies. As these regions of extra gravitational force also have adjacent areas of negative values (repulsive gravitational force), it is possible to show that any mass placed in the gravitational field far from the galaxy center will acquire, on average, a null acceleration, thereby remains the “light push,” or in other words, the “mean luminosity density” between galaxies as an explanation for the accelerating expansion of the universe, today being considered mainly due to dark energy. Along with the article, it is showed that the effect of light push is sufficient to explain the expansion of the universe. The present work also explains the nonlinear behavior of gravitational fields near massive objects such as blackholes, not contradicting the theory of general relativity, instead giving a complementary description of how black holes work, even describing the gravitational field internally to it, which is not available in the GR theory.展开更多
文摘The main aim of the paper is to present (and at the same time offer) a differ-ent perspective for the analysis of the accelerated expansion of the Universe. A perspective that can surely be considered as being “in parallel” to the tradition-al ones, such as those based, for example, on the hypotheses of “Dark Matter” and “Dark Energy”, or better as a “com-possible” perspective, because it is not understood as being “exclusive”. In fact, it is an approach that, when con-firmed by experimental results, always keeps its validity from an “operative” point of view. This is because, in analogy to the traditional perspectives, on the basis of Popper’s Falsification Principle the corresponding “Generative” Logic on which it is based has not the property of the perfect induction. The basic difference then only consists in the fact that the Evolution of the Universe is now modeled by considering the Universe as a Self-Organizing System, which is thus analyzed in the light of the Maximum Ordinality Principle.
文摘The paper considers cosmological objects belonging to fundamentally different classes that do not intersect with each other. Firstly, these are objects that make up a pure Hubble stream. Secondly, these are objects that have constant proper distances. These include planets, stars, and galaxies in gravitationally coupled systems. They all do not participate in the Hubble stream as independent objects. It is shown that the commoving reference system and proper reference system standardly used in cosmology change places with each other when switching from considering Hubble objects to “planets”. The features of the evolution (more precisely, devolution, degradation, reverse development) of the latter were analyzed and it was found that the cosmological acceleration of all “planets”, in contrast to Hubble objects, coincides in order of magnitude with the fundamental value of <em>H</em><sup><em>2</em></sup><em>R</em>. As applied to the Pioneers anomaly, this approach allowed us to obtain the calculated value of cosmological acceleration, which coincides in order of magnitude with the observed value. It seems that this approach is applicable also to other local gravitationally coupled systems and allows us to explain the characteristic flattened shape of the orbital curves of stars and galaxies by the fact that the influence of the fundamental cosmological acceleration <em>H</em><sup><em>2</em></sup><em>R</em> is added to the system’s own gravitational field.
文摘The commonly accepted view is that the Universe is currently in the dark energy dominance era (estimated to start about 5 billion years ago)—the era where yet unknown dark energy dominates over the gravitation and is responsible for the observed acceleration of the Universe expansion. In the present paper, we consider a “gas” of a large number of gravitating neutral nonrelativistic particles having a practically infinite lifetime and zero or very little interaction with the rest of the matter (neutrinos could be an example). One of the central points is the application of Dirac’s Generalized Hamiltonian Dynamics to pairs of these particles. Another central point is the application of the virial theorem to pairs of zero total energy. We demonstrate that as a result, the gravitational interaction within the entire system effectively decreases. Together with the observational fact of the Universe rotation (according to Shamir’s study of 2020), this model provides a possible explanation of the entire history of the Universe expansion: both the era of the decelerating expansion and the current era of the accelerated expansion.
文摘The component of light in the 3<sup>rd</sup> dimension decreases as light enters the 4<sup>th</sup> dimension created by a Black Hole. Hence particles moving in 3-D space will emit radiation due to the Cherenkov Effect. Gravity and acceleration are the same according to Einstein’s Equivalence Principle. Density also has the same effect as gravity because gravity attracts matter thereby increasing matter density. The laws of Physics and all the constants of nature such as the Speed of light, Planck’s constant, the Gravitational constant, and so on are a function of the dimension of the space they are in since the vacuum energy density of each higher dimension is greater. We analyze the graph of the accelerated expansion of the Universe to calculate the acceleration for small Redshift z and predict what will happen for larger z values.
文摘The two principal contributors to the Hubble tension problem are the predictions of the baryonic acoustic oscillation model and the H<sub>0</sub> parameter fit of the “Tip of the Red Giant Branch” collaboration. In this paper, we show that the former is neither necessary nor possible and that the latter yields a value in agreement with the supernovae results when adjustments are made for errors in the peculiar velocity model used to isolate the recession velocities of galaxies. We also make comparisons between the predictions of our new model of cosmology and the curve fits of the standard model. For values of redshift ≤ 1 we find that, with a Hubble constant of H<sub>0</sub> = 73, the two agree almost exactly. We resolve the Hubble constant problem and validate the new model predictions for small redshifts.
文摘In the common theory of the Universe, the redshift of the light wavelength from distant stars indicates the speed of the star. In this study, the model of the Universe is the surface volume of the four-dimensional sphere, and the shape of the Universe results in the most of the redshift of light wavelength. Therefore, there is no dark energy accelerating the Universe. The surface of the four-dimensional sphere is a volume, and this volume is a good model for the Universe. The surface volume of the four-dimensional sphere has been explained by a model of four-dimensional cube, within which the forming of surface volume can be easily shown. The model of four-dimensional cube containing six side cubes is ingenious for explaining the structure of the four-dimensional Universe, but it is not enough because the four-dimensional cube has not six side cubes, but eight side cubes. Therefore, in this study a better method has been created to construct the four-dimensional cube. Our three-dimensional Universe is the surface of the four-dimensional sphere Universe. The volume of our three-dimensional Universe is finite, and beneath it is the infinite volume four-dimensional Super Universe. Two important basic formulae have been derived: The surface volume of the four-dimensional sphere is π<sup>3</sup>R<sup>3</sup> in which R is the radius of the sphere, and the fourth-power volume of the four-dimensional sphere is 1/4 π<sup>3</sup>R<sup>4</sup>. The volume of the Universe has been calculated π<sup>3</sup>R<sup>3</sup> = 62 × 10<sup>30</sup> ly<sup>3</sup>. Time as the fourth dimension of the space takes effect only near the speed of light, and therefore it has been ignored in this study.
文摘The article formulates the main principle of physics, which underlies this science. This principle has been called by the author of this article the Principle of differentiation into physical and mathematical theories. The article gives examples of the application of this principle in quantum mechanics and cosmology. A more detailed proof of the principle of equivalence of the electromagnetic field and the field of strong interaction to a free material particle is given. This principle, formulated in the article “Electrodynamics in Curvilinear Coordinates and the Equation of a Geodesic Line”, revealed the nature of the mass of elementary particles and became the basis for the formulation of the Principle of differentiation into physical and mathematical theories.
文摘We present a Quantum Space Model (QSM) of cosmic evolution based on the theory that space consists of energy quanta from which our universe came about. We used the Friedmann equations to trace its history and predict its ultimate fate. Results provide further support to our recent proposal that the accelerating expansion of the universe is due to a scalar space field which has become known as Dark Energy. In our model, the universe started from high energy space quanta which were triggered by quantum fluctuations that caused the Big Bang. It then expanded and cooled undergoing phase transitions to radiation, fundamental particles, and matter. Matter agglomerated and grew into stars, galaxies, etc. and was eventually consolidated by gravity into Black Holes, which finally ended in a Big Crunch in a state of deep freeze inside the Black hole at 1.380 trillion years. Fluctuations, quantum tunneling, or some other mechanisms caused a new Bang to start another cycle in its life. Our results are in good agreement with the theoretical predictions of a cyclic universe by Steinhardt and his associates, and by Penrose. Space and energy are equivalent as embodied in the Planck energy equation. They give rise to the two principal long range forces in the universe: the gravitational force and the space force. The latter may be the fifth force in the universe. The two forces could provide the clockwork mechanism operating our cyclic universe. If the Law of Conservation of Energy is universal, then the cosmos is eternal.
文摘The Current Standard Model of the Universe asserts that the universe is generated from a single Big Bang event followed by inflation. There is no center to this universe, hence, no preferential reference frame to describe the motions of celestial objects. We propose a new, Shell Model of the Universe, which contends that the universe is created from multiple, concentric big bangs. Accordingly, that origin presents itself as a unique, preferential reference frame, which furnishes the simplest description of the motions of galaxies in the cosmos. This is similar in manner to how planetary motion is more straightforwardly described via a sun-centered Solar System rather than an earth-centered one. The appeal of the Shell Model of the Universe lies in its simplistic ability to resolve the paradox of quasars, explain the variability in Hubble’s Constant, and solve the problematic accelerated expansion of the universe.
文摘The speed away of stars and galaxies is traditionally calculated from the relativistic formula according to the measurement of the redshift. It is demonstrated here another formula for this speed away of stars and galaxies, from this same redshift <em>z</em>. After having exposed critiques on the demonstration and the relativistic use which require the assumption of an expanding universe by itself, it is proposed within the framework of neo-Newtonian mechanics the formula <img src="Edit_5abcd41b-f0f0-4fdd-8d05-07b43d1fa78c.png" alt="" /> where <em>V</em> is the speed from the source. This formula has the double characteristic of being equivalent to relativistic predictions for low redshifts, but of deviating from them by up to 17% for high redshifts. It is consistent with the observation of the anisotropy of the Universe and the Cosmic Microwave Background. It helps to explain Pioneer anomalies. It is compatible with the constancy in the majority of cases of interference phenomena. Finally, it provides a new analysis grid for the observation of supernovae, galaxies and distant pulsars, thus opening up new fields of research on the increase in distances attributed to dark energy and also in other areas of the cosmology.
文摘The Lambda Cold Dark Matter (ΛCDM) model is currently the best model to describe the development of the Universe from the Big Bang to the present time. It is composed of six parameters, two of them, Dark Energy (DE) and CDM, with unknown physical explanations. DE, leading to accelerated expansion of the Universe, is considered a scalar field characterized by exerting its force by repulsive gravity. We examined whether DE can be explained as the warping of spacetime in our Universe by external universes as components of a Multiverse or, in other words, as the gravitational pull exerted by other universes. The acceleration, the resultant kinetic energy, E<sub>kin</sub>, and the cosmological constant, Λ, were calculated for one to four external universes. The acceleration is approx. 10<sup>-11</sup> m/s<sup>2</sup>, which is in agreement with observations. Its value is dependent upon the numbers and relative positions of external universes. DE density is approx. 10<sup>-29</sup> kg/m<sup>3</sup> and Λ is in the range of 10<sup>-38</sup> s<sup>-2</sup> and 10<sup>-55</sup> m<sup>-2</sup>, respectively. Warping of spacetime by external universes as a physical explanation for DE seems feasible and warrants further considerations.
文摘This paper suggests explanations for otherwise seemingly unexplained data about elementary particles and cosmology. The explanations have bases in coordinate-based modeling and in integer-based characterizations for some catalogs. One catalog features properties—including charge, mass, and angular momentum—of objects. Another catalog features all known and some possible elementary particles. Assumptions include that multipole-expansion mathematics has uses regarding long-range interactions, such as gravity, and that nature includes six isomers of all elementary particles other than long-range-interaction bosons. One isomer associates with ordinary matter. Five isomers are associated with dark matter. Multipole notions help explain large-scale aspects such as the rate of expansion of the universe.
文摘The theory here developed, makes use of the decomposition of matter (mass) in different spatial frequencies k’s using spatial Fourier transforms, and the posterior use of modified inverse Fourier transforms to construct an accurate description of the classical Newtonian gravitational field. Introducing the concept of quantization of the spatial frequency <em>k</em>, which means allowing only discrete values, such as <em>k<sub>m</sub></em>, 2<em>k<sub>m</sub></em>, 3<em>k<sub>m</sub></em>, leads to the appearance of extra gravitational force regions that occur at distances equally spaced apart in 2π/<em>k<sub>m</sub></em>. These areas of extra gravitational force decrease inscribed in an inverse of the distance envelope (1/<em>r</em>). The value of 2π/<em>k<sub>m</sub></em> can be adjusted to be of the order of kiloparsec (kpc), being this way a plausible explanation for the effect of the dark matter since this causes practically flat rotation curves for most of the galaxies. As these regions of extra gravitational force also have adjacent areas of negative values (repulsive gravitational force), it is possible to show that any mass placed in the gravitational field far from the galaxy center will acquire, on average, a null acceleration, thereby remains the “light push,” or in other words, the “mean luminosity density” between galaxies as an explanation for the accelerating expansion of the universe, today being considered mainly due to dark energy. Along with the article, it is showed that the effect of light push is sufficient to explain the expansion of the universe. The present work also explains the nonlinear behavior of gravitational fields near massive objects such as blackholes, not contradicting the theory of general relativity, instead giving a complementary description of how black holes work, even describing the gravitational field internally to it, which is not available in the GR theory.