The common defects of the Roe scheme are the non-physical expansion shock and shock instability. By removing the momentum interpolation mechanism(MIM), an improved method with several advantages has been presented to ...The common defects of the Roe scheme are the non-physical expansion shock and shock instability. By removing the momentum interpolation mechanism(MIM), an improved method with several advantages has been presented to suppress the shock instability. However, it cannot prevent the expansion shock and is incompatible with the traditional curing method for expansion shock. To solve the problem, the traditional curing mechanism is analyzed. Effectiveness of the traditional curing method is discussed,and several defects are identified, one of which leads to incompatibility between curing shock instability and expansion shock. Consequently, an improved Roe scheme is proposed, which is with low computational costs, concise, easy to implement, and robust.More importantly, the proposed scheme can simultaneously solve the problem of shock instability and expansion shock without additional costs.展开更多
In this paper, the two-flume method was used to study the change laws of the thermal conductivity and thermal expansion coefficient of diamond/Cu composite materials with 100, 300, and 500 cycle numbers, under the act...In this paper, the two-flume method was used to study the change laws of the thermal conductivity and thermal expansion coefficient of diamond/Cu composite materials with 100, 300, and 500 cycle numbers, under the action of thermal shock load between-196 and 85 °C; the X-ray diffraction method(XRD) was used to study the change of the residual stress in the thermal shock process of the diamond/Cu composite materials; and the evolution of the fracture microstructure with different thermal shock cycle numbers was observed through scanning electron microscopy(SEM). The results of the study show that the increase of the binder residue at the interface reduces the thermal shock stability of the diamond/Cu composite materials. In addition, under the thermal shock load between-196 and 85 °C, the residual stress of the diamond/Cu composite materials increases continuously with the increase of the cycle numbers, the increase of residual stress leads to a small amount of interface debonding, an increase of the interfacial thermal resistances, and a decrease of the constraints of low-expansion component on material deformation, thus the thermal conductivity decreases slightly and the thermal expansion coefficient increases slightly.展开更多
A compressible and multiphase flows solver has been developed for the study of liquid/gas flows involving shock waves and strong expansion waves leading to cavitation.This solver has a structure similar to those of th...A compressible and multiphase flows solver has been developed for the study of liquid/gas flows involving shock waves and strong expansion waves leading to cavitation.This solver has a structure similar to those of the one-fluid Euler solvers,differing from them by the presence of a void ratio transport-equation.The model and the system of equations to be simulated are presented.Results are displayed for shock and expansion tube problems,shock-bubble interaction and underwater explosion.Close agreement with reference solutions,obtained from explicit finite volume approaches,is demonstrated.Different numerical methods are additionally displayed to provide comparable and improved computational efficiency to the model and the system of equations.The overall procedure is therefore very well suited for use in general two-phase fluid flow simulations.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.51736008 and 51276092)
文摘The common defects of the Roe scheme are the non-physical expansion shock and shock instability. By removing the momentum interpolation mechanism(MIM), an improved method with several advantages has been presented to suppress the shock instability. However, it cannot prevent the expansion shock and is incompatible with the traditional curing method for expansion shock. To solve the problem, the traditional curing mechanism is analyzed. Effectiveness of the traditional curing method is discussed,and several defects are identified, one of which leads to incompatibility between curing shock instability and expansion shock. Consequently, an improved Roe scheme is proposed, which is with low computational costs, concise, easy to implement, and robust.More importantly, the proposed scheme can simultaneously solve the problem of shock instability and expansion shock without additional costs.
基金financially supported by the Program of National Natural Science Foundation of China (No. 50971020)
文摘In this paper, the two-flume method was used to study the change laws of the thermal conductivity and thermal expansion coefficient of diamond/Cu composite materials with 100, 300, and 500 cycle numbers, under the action of thermal shock load between-196 and 85 °C; the X-ray diffraction method(XRD) was used to study the change of the residual stress in the thermal shock process of the diamond/Cu composite materials; and the evolution of the fracture microstructure with different thermal shock cycle numbers was observed through scanning electron microscopy(SEM). The results of the study show that the increase of the binder residue at the interface reduces the thermal shock stability of the diamond/Cu composite materials. In addition, under the thermal shock load between-196 and 85 °C, the residual stress of the diamond/Cu composite materials increases continuously with the increase of the cycle numbers, the increase of residual stress leads to a small amount of interface debonding, an increase of the interfacial thermal resistances, and a decrease of the constraints of low-expansion component on material deformation, thus the thermal conductivity decreases slightly and the thermal expansion coefficient increases slightly.
基金The authors gratefully thank K.Tang and A.Beccantini fromthe Commissariata l’Energie Atomique for having provided the numerical solutions computed with their sevenequation model.The second author would like to particularly acknowledge the support provided by the German Jordanian University through the project SEED-SNRE 7-2014.
文摘A compressible and multiphase flows solver has been developed for the study of liquid/gas flows involving shock waves and strong expansion waves leading to cavitation.This solver has a structure similar to those of the one-fluid Euler solvers,differing from them by the presence of a void ratio transport-equation.The model and the system of equations to be simulated are presented.Results are displayed for shock and expansion tube problems,shock-bubble interaction and underwater explosion.Close agreement with reference solutions,obtained from explicit finite volume approaches,is demonstrated.Different numerical methods are additionally displayed to provide comparable and improved computational efficiency to the model and the system of equations.The overall procedure is therefore very well suited for use in general two-phase fluid flow simulations.