Salt expansion in sulfate saline soils that are widely distributed in northwestern China causes serious infrastructural damages under low-temperature conditions. However, the mechanism of salt expansion under low temp...Salt expansion in sulfate saline soils that are widely distributed in northwestern China causes serious infrastructural damages under low-temperature conditions. However, the mechanism of salt expansion under low temperatures is not clear. In this study, we conducted a series of cooling experiments combined with salt crystallization to study this mechanism, and employed an ionic model to calculate the supersaturation ratio of the solution. During the experiments, the strength and the process of salt expansion were examined under different cooling rates and various crystal morphologies. The relationship between temperature and supersaturation ratio under transient conditions was also considered. Results indicate that the initial supersaturation ratio of a sodium sulfate solution is closely related to environmental conditions, and that this ratio decreases with slowing the cooling rates and stabilizing the crystal forms. Higher initial supersaturation ratios lead to an increased non-steady-state zone, resulting in less salt expansion. On the other hand, chloride ion content has a distinct influence on the crystallization supersaturation ratio of the sodium sulfate solution, and higher chloride ion content can inhibit salt expansion in sodium saline soils. These findings help explain salt expansion mechanisms in complex conditions such as seasonally frozen soils, and thus help search for improved methods of preventing salt expansion in sulfate saline soils.展开更多
This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between the...This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.展开更多
Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))data...Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.展开更多
Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective struc...Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content.展开更多
Volume instability of expansive soils due to moisture fluctuations is often disastrous,causing severe damages and distortions in the supported structures.It is,therefore,necessary to adequately improve the performance...Volume instability of expansive soils due to moisture fluctuations is often disastrous,causing severe damages and distortions in the supported structures.It is,therefore,necessary to adequately improve the performance of such soils that they can favorably fulfil the post-construction stability requirements.This can be achieved through chemical stabilization using additives such as lime,cement and fly ash.In this paper,suitability of such additives under various conditions and their mechanisms are reviewed in detail.It is observed that the stabilization process primarily involves hydration,cation exchange,flocculation and pozzolanic reactions.The degree of stabilization is controlled by several factors such as additive type,additive content,soil type,soil mineralogy,curing period,curing temperature,delay in compaction,pH of soil matrix,and molding water content,including presence of nano-silica,organic matter and sulfate compounds.Provision of nano-silica not only improves soil packing but also accelerates the pozzolanic reaction.However,presence of deleterious compounds such as sulfate or organic matter can turn the treated soils unfavorable at times even worser than the unstabilized ones.展开更多
The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can ...The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.展开更多
Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to...Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to cracked expansive soils that are considered discontinuous media.In this study,direct shear tests of three different scales(30 cm^(2),900 cm^(2),1963 cm^(2))and crack image analysis were carried out on undisturbed soil samples subjected to drying-wetting cycles in-situ.The REV size of expansive soil was investigated using the crack intensity factor(CIF)and soil cohesion.The results show that soil cohesion decreased with increasing sample area,and the development of secondary cracks further exacerbated the size effect of sample on cohesion of the soil.As shrinkage cracks developed,the REV size of the soil gradually increased and plateaued after 3−5 cycles.Under the same drying-wetting cycle conditions,the REV size determined using soil cohesion(REV-C)is 1.75 to 2.97 times the REV size determined using CIF(REV-CIF).Under the influence of shrinkage cracks,the average CIF is positively correlated with the REV size determined using different maximum permissible errors,with the coefficient of correlation greater than 0.9.A method for determining the REV-C based on crack image analysis is proposed,and the REV-C of expansive soil in the study area under different exposure times is given.展开更多
Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive ...Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive soils under different loads, and its testing error is verified. With this instrument,direct shear tests were performed on samples experiencing 0-6 cycles under vertical loads of 0 kPa,5 kPa, 15 kPa, and 30 k Pa. The results found that this instrument provides a new method for evaluating the effects of wetting–drying cycles on soils, and this method represents actual engineering conditions more accurately than do preexisting methods. It accurately controls the water content within 1% while simulating the specified loads at different soil depths.Cohesion is significantly affected by wetting–drying cycles, while the friction angle is not as sensitive to these cycles. Decrease in shear strength can be attributed to the fissures in soils caused by wetting–drying cycles. The existence of vertical loads effectively restricts shrinkage fissuring and cohesion attenuation, consequently inhibiting the attenuation of shear strength.展开更多
A series of tests were performed to investigate the macroscopic properties and the stabilization mechanism of calcium lignosulphonate modified expansive soil.Compared with natural soil,soil modified by 4%calcium ligno...A series of tests were performed to investigate the macroscopic properties and the stabilization mechanism of calcium lignosulphonate modified expansive soil.Compared with natural soil,soil modified by 4%calcium lignosulphonate showed 56.5%increased 28 days unconfined compressive strength and 23.8%decreased free expansion rate.The X-ray diffraction analysis results indicate the existence of cation exchange and the reduction of montmorillonite interplanar spacing.The X-computed tomography results demonstrate that calcium lignosulphonate decreased the porosity and optimized the pore distribution.The calcium lignosulphonate also increased the stability of the suspension system according to the Zeta potential results.Moreover,the results of rheological tests show that the moderate amount of calcium lignosulphonate enhanced the yield stress and the plastic viscosity,proving the formation of a strong connection between soil particles.展开更多
The factors influencing on soil expansion are reviewed in the paper. A mechanics model to determine swelling potential of expansive soils is presented. The mechanics model is based on the softening of expansive soil f...The factors influencing on soil expansion are reviewed in the paper. A mechanics model to determine swelling potential of expansive soils is presented. The mechanics model is based on the softening of expansive soil following absorption of water. The constitutive relationships of the mechanics model include the relationship among swelling under free load, swelling under load, and vertical pressure, and the relationship of swelling under free loading and swelling pressure. A concept of additional compression modulus is introduced and the method determining the modulus is proposed. Finally, the predicted results of swelling potential using the mechanics model compare well with the measured data.展开更多
This study addresses firstly the soil fabric variations of loose and dense compacted soil samples during a single wetting/drying cycle at suctions between 0 and 287.9 MPa using mainly the mercury intrusion porosimetry...This study addresses firstly the soil fabric variations of loose and dense compacted soil samples during a single wetting/drying cycle at suctions between 0 and 287.9 MPa using mainly the mercury intrusion porosimetry(MIP) tests.Two suction techniques were employed to apply this wide suction range:the osmotic technique for suctions less than 8.5 MPa,and the vapor equilibrium or salt solution technique for suctions higher than 8.5 MPa.Secondly,the soil water retention curves(SWRCs) were predicted by the MIP test results for both loose and dense soil samples.A reasonable correspondence between MIP results and SWRCs was found on the wetting path at lower suctions close to saturation and on drying path at higher suctions.展开更多
In this paper,the discrete element method(DEM)is used to study the microstructure of expansive soils.The results of the numerical calculations are in agreement with the stress-strain triaxial test curve that is obtain...In this paper,the discrete element method(DEM)is used to study the microstructure of expansive soils.The results of the numerical calculations are in agreement with the stress-strain triaxial test curve that is obtained for a representative expansive soil.Biaxial compression tests are conducted for different confining pressures(50 kpa,100 kpa,and 150 kpa).Attention is paid to the following aspects:deviatoric stress,boundary energy,friction energy,bond energy,strain energy,kinetic energy,and the contact force between grains when the test specimen is strained and to the effect of the different confining pressures on the internal crack expansion.The results of this research show that the cross-section of the specimen is destroyed along the middle part of the specimen itself.When the confining pressure is higher,the impulse is stronger,and this leads to more effective destruction.展开更多
When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining str...When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining structures become unpredictable.This necessitates the determination of lateral pressure coefficient at rest(k_(0) value)for expansive soils in landfill.Considering compaction,excavation of expansive soils,as well as construction of landfill in different seasons,series of stepwise loading and unloading consolidation tests at various moisture contents were carried out in this work to explore the evolution characteristics of k_(0) value and assess the dependence of k_(0) value on vertical stress and moisture content.Besides,scanning electron microscope(SEM)was used to track the change in microstructural features with vertical stresses.The results indicated that the k_(0) value of expansive soil shows a pronounced nonlinearity and is inextricably linked with vertical stress and moisture content,based on which a prediction formula to estimate the variation in k_(0) value with vertical stress during loading stage was proposed;there is a significant exponential increase in k_(0) value with overconsolidation ratio(OCR)during unloading stage,and OCR dominates the release of horizontal stress of expansive soil;SEM results revealed that with an increase in vertical stress,the anisotropy of expansive soil microstructure increases dramatically,causing a significant directional readjustment,which is macroscopically manifested as an initially rapid increase in k_(0) value;but when vertical stress increases to a critical value,the anisotropy of microstructure increases marginally,indicating a stable orientation occurring in the soil microstructure,which causes the k_(0) value to maintain a relatively stable value.展开更多
Typical failure types of slopes of expansive soils are divided to two kinds: slip in surface layer and slip in shallow layer. Based on total strength law of expansive soils, the relationship between its water content...Typical failure types of slopes of expansive soils are divided to two kinds: slip in surface layer and slip in shallow layer. Based on total strength law of expansive soils, the relationship between its water content and shear strength inculding cohesion and friction angle, was studied in detail. Acoording to change of water content and depth effect during rainfall, distribution of shear strength in slopes of expansive soils was analyzed. Finally, with a slope of expansive soils in Nanning city of Guangxi Autonomous Region of China as a case, safety factor and slip surface was studied.展开更多
Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and s...Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and settlement of the embankments were analyzed, and the obtained results can be used as a reference to field construction.展开更多
The phenomena of shrinkage and swelling of clay induce damage to housing structures every year. Precipitation, climatic changes and drought are the cause of wall cracks due to subsidence or swelling of the supporting ...The phenomena of shrinkage and swelling of clay induce damage to housing structures every year. Precipitation, climatic changes and drought are the cause of wall cracks due to subsidence or swelling of the supporting soil. This movement alters the balance between the soil and the structures. To explain this defection, the soil is made up of three elements: the solid, the liquid and the gas. Sometimes in a natural way or following a human intervention, one of these elements undergoes an abnormal variation that causes the loss of the balance between land and works. It is in this sense that this article deals on the one hand with the factors of predisposition and triggering of the phenomena of shrinkage-swelling of the clay soils of Diamniadio and on the other hand, the factors of aggravation linked to the lithological heterogeneity and the variation in the thickness of the layers susceptible to shrinkage-swelling. The studies carried out have enabled a deeper understanding of the behavior of expansive soils following their interactions with climate, vegetation, hydrology, hydrogeology, constructions among others, but also the influence of lateral and vertical variations of fine soil facies.展开更多
Expansive soils can pose tough issues to civil engineering applications. In a typical year, expansive soils can cause a greater financial loss than earthquakes, floods, hurricanes and tornadoes combined. Various means...Expansive soils can pose tough issues to civil engineering applications. In a typical year, expansive soils can cause a greater financial loss than earthquakes, floods, hurricanes and tornadoes combined. Various means have been studied to tackle problems associated with expansive soils. The majority of the methods are based on treatment of the soils. While the methods may be effective in some cases, their limitations are also obvious: The treatment normally involves complex processes and may not be eco-friendly in the long run. In many cases, the effectiveness of the treatment is uncertain. A retaining system that maintains a constant lateral pressure is proposed, which consists of three components: the retaining sheet, the slip-force device and the bracing column. The retaining sheet bears the pressure exerted by expansive backfills and is not embedded into the soils. Placed between the retaining sheet and bracing column, the slip-force device permits displacement of the retaining sheet but keeps the force on the sheet and the bracing column constant. The governing equation of the motion of the piston in the slip-force device is derived and a numerical simulation of a practical case is conducted based on the derived governing equation. Numerical results show that as the expansive soil swell, the spring force will increase and the piston will move accordingly. When the pressure of the oil in chamber reach<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">es</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the open threshold of the unidirectional relief valve, the valve will open and the spring force and the oil pressure in the chamber will keep constant. The results also show that some parameters, such as damping ratio, have very slight influences on the device behavior, say 2 × 10</span><sup><span style="font-family:Verdana;">-6</span></sup><span style="font-family:Verdana;"> or even 4.8 × 10</span><sup><span style="font-family:Verdana;">-9</span></sup><span style="font-family:Verdana;">. Theoretical and numerical studies prove the effectiveness of the proposed retaining system.</span></span></span></span>展开更多
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons...Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.展开更多
Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquak...Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.展开更多
In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embank...In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embankment section were simulated by ABAQUS. The simulation results indicate that the matric suction was a concave distribution on top of the expansive soil foundation and that it induced differential deformation of foundation and embankment. The peaks of tensile stress on top of the embankment are not located at a fixed site, but gradually move towards the shoulder following the evaporation duration. When the evaporation intensity is larger, the peak of tensile stress on top of embankment increases at a faster rate following the evaporation duration,and its location is closer to the shoulder. The thicker expansive soil layer helps the peaks of tensile stress to reach the critical tensile stress quickly, but the embankment cannot crack when the expansive soil layer is no more than 1.5m after 30d soil surface evaporation; the higher the embankment, the smaller the peak of tensile stress occurring on top of the highway embankment, and its location will be further away from the shoulder. Therefore, a higher embankment constructed on a thinner expansive soil layer can reduce the crack generation within the highway embankment.展开更多
基金supported by the National Natural Science Foundation of China (41601068, 31602001, 41230630)the Young Scholars Development Fund of Southwest Petroleum University (201599010104)the Scientific Research Starting Project of Southwest Petroleum University (2015QHZ025)
文摘Salt expansion in sulfate saline soils that are widely distributed in northwestern China causes serious infrastructural damages under low-temperature conditions. However, the mechanism of salt expansion under low temperatures is not clear. In this study, we conducted a series of cooling experiments combined with salt crystallization to study this mechanism, and employed an ionic model to calculate the supersaturation ratio of the solution. During the experiments, the strength and the process of salt expansion were examined under different cooling rates and various crystal morphologies. The relationship between temperature and supersaturation ratio under transient conditions was also considered. Results indicate that the initial supersaturation ratio of a sodium sulfate solution is closely related to environmental conditions, and that this ratio decreases with slowing the cooling rates and stabilizing the crystal forms. Higher initial supersaturation ratios lead to an increased non-steady-state zone, resulting in less salt expansion. On the other hand, chloride ion content has a distinct influence on the crystallization supersaturation ratio of the sodium sulfate solution, and higher chloride ion content can inhibit salt expansion in sodium saline soils. These findings help explain salt expansion mechanisms in complex conditions such as seasonally frozen soils, and thus help search for improved methods of preventing salt expansion in sulfate saline soils.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52378365 and 52179109)Jiangsu Province Excellent Postdoctoral Program(Grant No.2023)China Scholarship Council-University of Ottawa Joint Scholarship.
文摘This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.
基金great gratitude to National Key Research and Development Project(Grant No.2019YFC1509800)for their financial supportNational Nature Science Foundation of China(Grant No.12172211)for their financial support.
文摘Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.
基金financially supported by the National Key R&D Program of China (Grant No. 2019YFC1509901)。
文摘Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content.
文摘Volume instability of expansive soils due to moisture fluctuations is often disastrous,causing severe damages and distortions in the supported structures.It is,therefore,necessary to adequately improve the performance of such soils that they can favorably fulfil the post-construction stability requirements.This can be achieved through chemical stabilization using additives such as lime,cement and fly ash.In this paper,suitability of such additives under various conditions and their mechanisms are reviewed in detail.It is observed that the stabilization process primarily involves hydration,cation exchange,flocculation and pozzolanic reactions.The degree of stabilization is controlled by several factors such as additive type,additive content,soil type,soil mineralogy,curing period,curing temperature,delay in compaction,pH of soil matrix,and molding water content,including presence of nano-silica,organic matter and sulfate compounds.Provision of nano-silica not only improves soil packing but also accelerates the pozzolanic reaction.However,presence of deleterious compounds such as sulfate or organic matter can turn the treated soils unfavorable at times even worser than the unstabilized ones.
基金Project 50579017 supported by the National Natural Science Foundation of China
文摘The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.
基金Project(41472240)supported by the National Natural Science Foundation of ChinaProjects(2015B25514,2015B17214)supported by the Fundamental Research Funds for the Central Universities,China。
文摘Cracks resulting from cyclic wetting and drying of expansive soils create discontinuities and anisotropy in the soil.The representative elementary volume(REV)defined by the continuous-media theory cannot be applied to cracked expansive soils that are considered discontinuous media.In this study,direct shear tests of three different scales(30 cm^(2),900 cm^(2),1963 cm^(2))and crack image analysis were carried out on undisturbed soil samples subjected to drying-wetting cycles in-situ.The REV size of expansive soil was investigated using the crack intensity factor(CIF)and soil cohesion.The results show that soil cohesion decreased with increasing sample area,and the development of secondary cracks further exacerbated the size effect of sample on cohesion of the soil.As shrinkage cracks developed,the REV size of the soil gradually increased and plateaued after 3−5 cycles.Under the same drying-wetting cycle conditions,the REV size determined using soil cohesion(REV-C)is 1.75 to 2.97 times the REV size determined using CIF(REV-CIF).Under the influence of shrinkage cracks,the average CIF is positively correlated with the REV size determined using different maximum permissible errors,with the coefficient of correlation greater than 0.9.A method for determining the REV-C based on crack image analysis is proposed,and the REV-C of expansive soil in the study area under different exposure times is given.
基金provided by the National Natural Science Foundation of China (Grant No. 51169005)
文摘Alternating rainfall and evaporation in nature severely impact the shear strength of expansive soils. This study presents an instrument for simulating the effect of wetting–drying cycles on the strength of expansive soils under different loads, and its testing error is verified. With this instrument,direct shear tests were performed on samples experiencing 0-6 cycles under vertical loads of 0 kPa,5 kPa, 15 kPa, and 30 k Pa. The results found that this instrument provides a new method for evaluating the effects of wetting–drying cycles on soils, and this method represents actual engineering conditions more accurately than do preexisting methods. It accurately controls the water content within 1% while simulating the specified loads at different soil depths.Cohesion is significantly affected by wetting–drying cycles, while the friction angle is not as sensitive to these cycles. Decrease in shear strength can be attributed to the fissures in soils caused by wetting–drying cycles. The existence of vertical loads effectively restricts shrinkage fissuring and cohesion attenuation, consequently inhibiting the attenuation of shear strength.
基金Funded by National Natural Science Foundation of China(Nos.51890904 and 51508090)National Key Technology R&D Program of China(No.2017YFB0309904)the National Basic Research Program of China(973 Program)(No.2015CB655100)。
文摘A series of tests were performed to investigate the macroscopic properties and the stabilization mechanism of calcium lignosulphonate modified expansive soil.Compared with natural soil,soil modified by 4%calcium lignosulphonate showed 56.5%increased 28 days unconfined compressive strength and 23.8%decreased free expansion rate.The X-ray diffraction analysis results indicate the existence of cation exchange and the reduction of montmorillonite interplanar spacing.The X-computed tomography results demonstrate that calcium lignosulphonate decreased the porosity and optimized the pore distribution.The calcium lignosulphonate also increased the stability of the suspension system according to the Zeta potential results.Moreover,the results of rheological tests show that the moderate amount of calcium lignosulphonate enhanced the yield stress and the plastic viscosity,proving the formation of a strong connection between soil particles.
文摘The factors influencing on soil expansion are reviewed in the paper. A mechanics model to determine swelling potential of expansive soils is presented. The mechanics model is based on the softening of expansive soil following absorption of water. The constitutive relationships of the mechanics model include the relationship among swelling under free load, swelling under load, and vertical pressure, and the relationship of swelling under free loading and swelling pressure. A concept of additional compression modulus is introduced and the method determining the modulus is proposed. Finally, the predicted results of swelling potential using the mechanics model compare well with the measured data.
文摘This study addresses firstly the soil fabric variations of loose and dense compacted soil samples during a single wetting/drying cycle at suctions between 0 and 287.9 MPa using mainly the mercury intrusion porosimetry(MIP) tests.Two suction techniques were employed to apply this wide suction range:the osmotic technique for suctions less than 8.5 MPa,and the vapor equilibrium or salt solution technique for suctions higher than 8.5 MPa.Secondly,the soil water retention curves(SWRCs) were predicted by the MIP test results for both loose and dense soil samples.A reasonable correspondence between MIP results and SWRCs was found on the wetting path at lower suctions close to saturation and on drying path at higher suctions.
基金financially supported by the National Science Foundation of China(41877251)the science and technology innovation fund project of Xinxiang University(15ZA06).
文摘In this paper,the discrete element method(DEM)is used to study the microstructure of expansive soils.The results of the numerical calculations are in agreement with the stress-strain triaxial test curve that is obtained for a representative expansive soil.Biaxial compression tests are conducted for different confining pressures(50 kpa,100 kpa,and 150 kpa).Attention is paid to the following aspects:deviatoric stress,boundary energy,friction energy,bond energy,strain energy,kinetic energy,and the contact force between grains when the test specimen is strained and to the effect of the different confining pressures on the internal crack expansion.The results of this research show that the cross-section of the specimen is destroyed along the middle part of the specimen itself.When the confining pressure is higher,the impulse is stronger,and this leads to more effective destruction.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901)。
文摘When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining structures become unpredictable.This necessitates the determination of lateral pressure coefficient at rest(k_(0) value)for expansive soils in landfill.Considering compaction,excavation of expansive soils,as well as construction of landfill in different seasons,series of stepwise loading and unloading consolidation tests at various moisture contents were carried out in this work to explore the evolution characteristics of k_(0) value and assess the dependence of k_(0) value on vertical stress and moisture content.Besides,scanning electron microscope(SEM)was used to track the change in microstructural features with vertical stresses.The results indicated that the k_(0) value of expansive soil shows a pronounced nonlinearity and is inextricably linked with vertical stress and moisture content,based on which a prediction formula to estimate the variation in k_(0) value with vertical stress during loading stage was proposed;there is a significant exponential increase in k_(0) value with overconsolidation ratio(OCR)during unloading stage,and OCR dominates the release of horizontal stress of expansive soil;SEM results revealed that with an increase in vertical stress,the anisotropy of expansive soil microstructure increases dramatically,causing a significant directional readjustment,which is macroscopically manifested as an initially rapid increase in k_(0) value;but when vertical stress increases to a critical value,the anisotropy of microstructure increases marginally,indicating a stable orientation occurring in the soil microstructure,which causes the k_(0) value to maintain a relatively stable value.
文摘Typical failure types of slopes of expansive soils are divided to two kinds: slip in surface layer and slip in shallow layer. Based on total strength law of expansive soils, the relationship between its water content and shear strength inculding cohesion and friction angle, was studied in detail. Acoording to change of water content and depth effect during rainfall, distribution of shear strength in slopes of expansive soils was analyzed. Finally, with a slope of expansive soils in Nanning city of Guangxi Autonomous Region of China as a case, safety factor and slip surface was studied.
文摘Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and settlement of the embankments were analyzed, and the obtained results can be used as a reference to field construction.
文摘The phenomena of shrinkage and swelling of clay induce damage to housing structures every year. Precipitation, climatic changes and drought are the cause of wall cracks due to subsidence or swelling of the supporting soil. This movement alters the balance between the soil and the structures. To explain this defection, the soil is made up of three elements: the solid, the liquid and the gas. Sometimes in a natural way or following a human intervention, one of these elements undergoes an abnormal variation that causes the loss of the balance between land and works. It is in this sense that this article deals on the one hand with the factors of predisposition and triggering of the phenomena of shrinkage-swelling of the clay soils of Diamniadio and on the other hand, the factors of aggravation linked to the lithological heterogeneity and the variation in the thickness of the layers susceptible to shrinkage-swelling. The studies carried out have enabled a deeper understanding of the behavior of expansive soils following their interactions with climate, vegetation, hydrology, hydrogeology, constructions among others, but also the influence of lateral and vertical variations of fine soil facies.
文摘Expansive soils can pose tough issues to civil engineering applications. In a typical year, expansive soils can cause a greater financial loss than earthquakes, floods, hurricanes and tornadoes combined. Various means have been studied to tackle problems associated with expansive soils. The majority of the methods are based on treatment of the soils. While the methods may be effective in some cases, their limitations are also obvious: The treatment normally involves complex processes and may not be eco-friendly in the long run. In many cases, the effectiveness of the treatment is uncertain. A retaining system that maintains a constant lateral pressure is proposed, which consists of three components: the retaining sheet, the slip-force device and the bracing column. The retaining sheet bears the pressure exerted by expansive backfills and is not embedded into the soils. Placed between the retaining sheet and bracing column, the slip-force device permits displacement of the retaining sheet but keeps the force on the sheet and the bracing column constant. The governing equation of the motion of the piston in the slip-force device is derived and a numerical simulation of a practical case is conducted based on the derived governing equation. Numerical results show that as the expansive soil swell, the spring force will increase and the piston will move accordingly. When the pressure of the oil in chamber reach<span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">es</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> the open threshold of the unidirectional relief valve, the valve will open and the spring force and the oil pressure in the chamber will keep constant. The results also show that some parameters, such as damping ratio, have very slight influences on the device behavior, say 2 × 10</span><sup><span style="font-family:Verdana;">-6</span></sup><span style="font-family:Verdana;"> or even 4.8 × 10</span><sup><span style="font-family:Verdana;">-9</span></sup><span style="font-family:Verdana;">. Theoretical and numerical studies prove the effectiveness of the proposed retaining system.</span></span></span></span>
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901).
文摘Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.
基金National Natural Science Foundation of China under Grant Nos.52208345,52008124,52268054the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection under Grant No.SKLGP2022K002+1 种基金the Natural Science Foundation of Jiangsu Province under Grant No.BK20210479the Fundamental Research Funds for the Central Universities under Grant No.JUSRP121055。
文摘Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.
基金The National Natural Science Foundation of China(No.51378121)
文摘In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embankment section were simulated by ABAQUS. The simulation results indicate that the matric suction was a concave distribution on top of the expansive soil foundation and that it induced differential deformation of foundation and embankment. The peaks of tensile stress on top of the embankment are not located at a fixed site, but gradually move towards the shoulder following the evaporation duration. When the evaporation intensity is larger, the peak of tensile stress on top of embankment increases at a faster rate following the evaporation duration,and its location is closer to the shoulder. The thicker expansive soil layer helps the peaks of tensile stress to reach the critical tensile stress quickly, but the embankment cannot crack when the expansive soil layer is no more than 1.5m after 30d soil surface evaporation; the higher the embankment, the smaller the peak of tensile stress occurring on top of the highway embankment, and its location will be further away from the shoulder. Therefore, a higher embankment constructed on a thinner expansive soil layer can reduce the crack generation within the highway embankment.