Metal-organic framework nanosheets (MOF NNs) offer potential opportunities for many applications,but an efficient strategy for the scalable preparation of few-layered two-dimensional (2D) MOF NNs are still a major cha...Metal-organic framework nanosheets (MOF NNs) offer potential opportunities for many applications,but an efficient strategy for the scalable preparation of few-layered two-dimensional (2D) MOF NNs are still a major challenge.Herein,we present an efficient top-down method for the synthesis of the Ni-BDC(Ni_(2)(OH)_(2)(1,4-BDC);1,4-BDC=1,4-benzenedicarboxylate) nanosheets utilizing a novel thermal expansionquench method of the flowerlike bulky MOFs in liquid N2.The obtained Ni-BDC nanosheets exhibit significantly enhanced photocatalytic performance of reductive CO_(2)deoxygenation (7.0μmol h^(-1)mg^(-1)) under visible light illumination compared with the bulky MOFs,due to much higher surface area for CO_(2)adsorption,more abundant active sites exposed and stronger electron transport ability of the nanosheets.More importantly,this synthetic strategy can be extended to fabricate other MOF nanosheets which also exhibit significantly improved performance for deoxygenative CO_(2)reduction compared to their bulky counterparts.This work may provide a guideline for preparing other 2D layered photocatalysts materials to realize energy conversion applications.展开更多
基金financially supported by the Overseas Highlevel Talents Plan of China and Guangdong Provincethe Fundamental Research Funds for the Central Universities, the 100 Talents Plan Foundation of Sun Yat-sen University+3 种基金the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (No. 2017ZT07C069)National Key R&D Program of China (No. 2018YFA0108300)Local Innovative and Research Teams Project of Guangdong Peal River Talents Program (No. 2017BT01C161)the NSFC Projects (Nos. 22075321, 21821003, 21890380 and 21905315)。
文摘Metal-organic framework nanosheets (MOF NNs) offer potential opportunities for many applications,but an efficient strategy for the scalable preparation of few-layered two-dimensional (2D) MOF NNs are still a major challenge.Herein,we present an efficient top-down method for the synthesis of the Ni-BDC(Ni_(2)(OH)_(2)(1,4-BDC);1,4-BDC=1,4-benzenedicarboxylate) nanosheets utilizing a novel thermal expansionquench method of the flowerlike bulky MOFs in liquid N2.The obtained Ni-BDC nanosheets exhibit significantly enhanced photocatalytic performance of reductive CO_(2)deoxygenation (7.0μmol h^(-1)mg^(-1)) under visible light illumination compared with the bulky MOFs,due to much higher surface area for CO_(2)adsorption,more abundant active sites exposed and stronger electron transport ability of the nanosheets.More importantly,this synthetic strategy can be extended to fabricate other MOF nanosheets which also exhibit significantly improved performance for deoxygenative CO_(2)reduction compared to their bulky counterparts.This work may provide a guideline for preparing other 2D layered photocatalysts materials to realize energy conversion applications.