Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and s...Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and settlement of the embankments were analyzed, and the obtained results can be used as a reference to field construction.展开更多
This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between the...This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.展开更多
Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering cons...Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.展开更多
Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquak...Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.展开更多
Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))data...Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.展开更多
Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective struc...Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content.展开更多
The wide engineered application of compacted expansive soils necessitates understanding their behavior under field conditions.The results of this study demonstrate how seasonal climatic variation and stress and bounda...The wide engineered application of compacted expansive soils necessitates understanding their behavior under field conditions.The results of this study demonstrate how seasonal climatic variation and stress and boundary conditions individually or collectively influence the hydraulic and volume change behavior of compacted highly expansive soils.The cyclic wetting and drying(CWD)process was applied for two boundary conditions,i.e.constant stress(CS)and constant volume(CV),and for a wide range of axial stress states.The adopted CWD process affected the hydraulic and volume change behaviors of expansive soils,with the first cycle of wetting and drying being the most effective.The CWD process under CS conditions resulted in shrinkage accumulation and reduction in saturated hydraulic conductivity(k sat).On the other hand,CWD under CV conditions caused a reduction of swell pressure while has almost no impact on k sat.An elastic response to CWD was achieved after the third cycle for saturated hydraulic conductivity(k sat),the third to fourth cycle for the volume change potential under the CV conditions,and the fourth to fifth cycle for the volume change potential under the CS conditions.Finally,both swell pressure(s s)and saturated hydraulic conductivity(k sat)are not fundamental parameters of the expansive soil but rather depend on stress,boundary and wetting conditions.展开更多
When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining str...When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining structures become unpredictable.This necessitates the determination of lateral pressure coefficient at rest(k_(0) value)for expansive soils in landfill.Considering compaction,excavation of expansive soils,as well as construction of landfill in different seasons,series of stepwise loading and unloading consolidation tests at various moisture contents were carried out in this work to explore the evolution characteristics of k_(0) value and assess the dependence of k_(0) value on vertical stress and moisture content.Besides,scanning electron microscope(SEM)was used to track the change in microstructural features with vertical stresses.The results indicated that the k_(0) value of expansive soil shows a pronounced nonlinearity and is inextricably linked with vertical stress and moisture content,based on which a prediction formula to estimate the variation in k_(0) value with vertical stress during loading stage was proposed;there is a significant exponential increase in k_(0) value with overconsolidation ratio(OCR)during unloading stage,and OCR dominates the release of horizontal stress of expansive soil;SEM results revealed that with an increase in vertical stress,the anisotropy of expansive soil microstructure increases dramatically,causing a significant directional readjustment,which is macroscopically manifested as an initially rapid increase in k_(0) value;but when vertical stress increases to a critical value,the anisotropy of microstructure increases marginally,indicating a stable orientation occurring in the soil microstructure,which causes the k_(0) value to maintain a relatively stable value.展开更多
Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effect...Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effective stress principle,swelling force principle,and soil–water characteristics.Considering the viscoelasticity and structural damage of unsaturated expansive soil during loading,a fractional hardening–damage model of unsaturated expansive soil was established.The model parameters were established on the basis of the proposed calculation method of shear strength and the triaxial shear experiment on unsaturated expansive soil.The proposed model was verified by the experimental data and a traditional damage model.The proposed model can satisfactorily describe the entire process of the strain-hardening law of unsaturated expansive soil.Finally,by investigating the damage variables of the proposed model,it was found that:(a)when the values of confining pressure and matric suction are close,the coupling of confining pressure and matric suction contributes more to the shear strength;(b)there is a damage threshold for unsaturated expansive soil,and is mainly reflected by strength criterion of infinitesimal body;(c)the strain hardening law of unsaturated expansive soil is mainly reflected by fractional derivative operator.展开更多
To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three group...To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects.展开更多
This study examined the effects of using bagasse ash in replacement of ordinary Portland cement(OPC)in the treatment of expansive soils.The study concentrated on the compaction characteristics,volume change,compressiv...This study examined the effects of using bagasse ash in replacement of ordinary Portland cement(OPC)in the treatment of expansive soils.The study concentrated on the compaction characteristics,volume change,compressive strength,splitting tensile strength,microstructure,California bearing ratio(CBR)value,and shear wave velocity of expansive soils treated with cement.Different bagasse ash replacement ratios were used to create soil samples.At varying curing times of 7,14,and 28 days,standard compaction tests,unconfined compressive strength tests,CBR tests,Brazilian split tensile testing,and bender element(BE)tests were carried out.According to X-ray diffraction(XRD)investigations,quartz and crystobalite make up the majority of the minerals in bagasse ash.Bagasse ash contains a variety of grain sizes,including numerous fiber-shaped particles,according to a scanning electronic microscope(SEM)test.For all of the treated specimens with various replacement ratios,the overall additive content has not changed.The results of the Brazilian split tensile tests demonstrate improved tensile strength for all specimens with various replacement proportions.A lower maximum dry density and a greater optimal water content would result from the substitution of bagasse ash.When the replacement ratio is not more than 20%,the CBR values of the parts replaced specimens are even higher than the cement treatments.The results of BE testing on the treated soils show that there is significant stiffness anisotropy but that it steadily diminishes with curing time and replacement ratio.According to the study,bagasse ash is a useful mineral additive,and the best replacement ratio(CBA20)is 20%.展开更多
Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber.The tests have been conducted t...Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber.The tests have been conducted to analyze the liquid plastic limit,the particle distribution and the free expansion rate.The results show that:(1)With an increase in the cement-jute fiber content,the free expansion rate of the modified expansive soil gradually decreases,however,such a rate rebounds when the fiber content exceeds 0.5%and the cement content exceeds 6%.(2)With an increase in the cement percentage,the particle unevenness coefficient(Cu)and curvature coefficient(Cc)of the modified expansive soil tend to grow gradually.The Cc coefficient reaches 1.0 when the cement content is 6%.The unevenness coefficient of 16 soil samples is greater than 5.0,however,the Cu coefficient decreases when the cement content reaches 6%.(3)The plastic limit of soil increases as the cement content is made higher,while the liquid limit and plastic index decrease gradually.When the content of the modified material is 2%+0.1%~2%+0.7%(Cement content+jute fiber content),the change of particle size distribution is most obvious.(4)When the contents of cement and jute fiber are is 6%and 0.5%,respectively,the modification induced in the physical properties of soil samples corresponds to the best case.展开更多
A dynamic triaxial instrument was used to study the effects of different concentrations of sodium chloride and stress amplitudes on the dynamic properties of an expansive soil under cyclic loading.In particular,four p...A dynamic triaxial instrument was used to study the effects of different concentrations of sodium chloride and stress amplitudes on the dynamic properties of an expansive soil under cyclic loading.In particular,four parameters were considered in such a parametric investigation,namely,hysteresis curve morphology characteristic non-closure degreeεp,the ratio of the short and long axisα,the slope of the long axis k and the enclosed area S.The results show that with an increase in the sodium chloride concentration,the soil particle double electric layer becomes thinner,the distance between soil particles decreases,and the whole sample becomes denser.Theεp-N,α-N and S–N relation curves all show a decreasing trend.The ratio of plastic deformation to total deformation grows with increasing the dynamic stress amplitude,and the curves show an upwards trend.The k-N relationship curve displays an increasing trend with the concentration and a general downwards trend as the dynamic stress amplitude is made higher.This also indicates that sodium chloride solutions can improve the engineering properties of expansive soil to a certain extent.With an increase in the vibration times N,the shape of the hysteretic curve becomes narrower,and the whole soil exhibits a cyclic strain hardening.With the help of an exponential function,a model is introduced to predict the relationship between the concentration and the hysteretic curve.展开更多
In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embank...In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embankment section were simulated by ABAQUS. The simulation results indicate that the matric suction was a concave distribution on top of the expansive soil foundation and that it induced differential deformation of foundation and embankment. The peaks of tensile stress on top of the embankment are not located at a fixed site, but gradually move towards the shoulder following the evaporation duration. When the evaporation intensity is larger, the peak of tensile stress on top of embankment increases at a faster rate following the evaporation duration,and its location is closer to the shoulder. The thicker expansive soil layer helps the peaks of tensile stress to reach the critical tensile stress quickly, but the embankment cannot crack when the expansive soil layer is no more than 1.5m after 30d soil surface evaporation; the higher the embankment, the smaller the peak of tensile stress occurring on top of the highway embankment, and its location will be further away from the shoulder. Therefore, a higher embankment constructed on a thinner expansive soil layer can reduce the crack generation within the highway embankment.展开更多
The traditional stability analysis method of geogrid reinforced slopes does not consider the effect of lateral swelling,so it is not applicable to reinforced expansive soil slopes.This paper reports a new stability an...The traditional stability analysis method of geogrid reinforced slopes does not consider the effect of lateral swelling,so it is not applicable to reinforced expansive soil slopes.This paper reports a new stability analysis method for geogrid reinforced expansive soil slopes.The additional pullout force of the free zone due to the lateral swelling and the anti-pullout safety factor of each geogrid layer were obtained by ensuring the overall stability of the reinforced slope.The optimum design was carried out to treat an expansive soil cut slope in Hubei Province,China,by changing the spacing and length of geogrid reinforcement.Calculation results show that the additional pullout force caused by lateral swelling has a great influence on the anti-pullout stability of geogrids,and the local stability of the reinforced slope will be overestimated if the swelling effect of soil in the free zone is not considered.展开更多
The relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus of field unsaturated expansive soil in Nanning, Guangxi Province, China, was obtained by a direct or indi...The relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus of field unsaturated expansive soil in Nanning, Guangxi Province, China, was obtained by a direct or indirect method. Digital images of expansive soil of the surface fissure with different moisture contents were analyzed with the binarization statistic method. In addition, the fissure fractal dimension was computed with a self-compiled program. Combined with in situ seepage and loading plate tests, the relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus was initially established. The surface fissure ratio and moisture content show a linear relation, "y=-0.019 1x+1.028 5" for rufous expansive soil and "y=-0.07 1x+2.610 5" for grey expansive soil. Soil initial seepage coefficient and surface fissure ratio show a power function relation, "y=1× 10^-9exp(15.472x)" for rufous expansive soil and "y=5× 10^-7exp(4.209 6x)" for grey expansive soil. Grey expansive soil deformation modulus and surface fissure ratio show a power fimction relation of "y=3.935 7exp(0.993 6x)". Based on the binarization and fractal dimension methods, the results show that the surface fissure statistics can depict the fissure distribution in the view of two dimensions. And the evolvement behaviors of permeability and the deformation modulus can indirectly describe the developing state of the fissure. The analysis reflects that the engineering behaviors of unsaturated expansive soil are objectively influenced by fissure.展开更多
Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil,which is similar to the behavior of most materials under thermal effect,If the deformation is restricted,stress in expa...Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil,which is similar to the behavior of most materials under thermal effect,If the deformation is restricted,stress in expansive soil is caused by the swell-shrinking.The stress is defined as "moisture-change stress" and is adopted to analyze swell-shrinkage deformation based on the elasticity mechanics theory.The state when the total stress becomes equal to the soil tensile strength is considered as the cracking criterion as moisture-change increases.Then,the initial cracking mechanism due to evaporation is revealed as follows:Different rates of moisture loss at different depths result in greater shrinkage deformation on the surface while there is smaller shrinkage deformation at the underlayer in expansive soil;cracks will grow when the nonuniform shrinkage deformation increases to a certain degree.A theoretical model is established,which may be used to calculate the stress caused by moisture-change.The depth of initial cracks growing is predicted by the proposed model in expansive soil,A series of laboratory tests are carried out by exposing expansive soil samples with different moisture-changes.The process of crack propagation is investigated by resistivity method.The test results show good consistency with the predicted results by the proposed theoretical model.展开更多
Volume instability of expansive soils due to moisture fluctuations is often disastrous,causing severe damages and distortions in the supported structures.It is,therefore,necessary to adequately improve the performance...Volume instability of expansive soils due to moisture fluctuations is often disastrous,causing severe damages and distortions in the supported structures.It is,therefore,necessary to adequately improve the performance of such soils that they can favorably fulfil the post-construction stability requirements.This can be achieved through chemical stabilization using additives such as lime,cement and fly ash.In this paper,suitability of such additives under various conditions and their mechanisms are reviewed in detail.It is observed that the stabilization process primarily involves hydration,cation exchange,flocculation and pozzolanic reactions.The degree of stabilization is controlled by several factors such as additive type,additive content,soil type,soil mineralogy,curing period,curing temperature,delay in compaction,pH of soil matrix,and molding water content,including presence of nano-silica,organic matter and sulfate compounds.Provision of nano-silica not only improves soil packing but also accelerates the pozzolanic reaction.However,presence of deleterious compounds such as sulfate or organic matter can turn the treated soils unfavorable at times even worser than the unstabilized ones.展开更多
The elastic differential equations of load-transfer of single pile either with applied loads on pile-top or only under the soil swelling were established,respectively,based on the theory of pile-soil interaction and t...The elastic differential equations of load-transfer of single pile either with applied loads on pile-top or only under the soil swelling were established,respectively,based on the theory of pile-soil interaction and the shear-deformation method.The derivation of analytic solution to load-transfer for single pile in expansive soil could hereby be obtained by means of superposition principle under expansive soils swelling.The comparison of two engineering examples was made to prove the credibility of the suggested method.The analyzed results show that this analytic solution can achieve high precision with few parameters required,indicating its' simplicity and practicability in engineering application.The employed method can contribute to determining the greatest tension along pile shaft resulting from expansive soils swelling and provide reliable bases for engineering design.The method can be employed to obtain various distributive curves of axial force,settlements and skin friction along the pile shaft with the changes of active depth,vertical movements of the surface and loads of pile-top.展开更多
To better understand the dynamic properties of expansive clay treated with lime, a series of laboratory tests were conducted using a dynamic triaxial test system. The influential factors, including moisture content, c...To better understand the dynamic properties of expansive clay treated with lime, a series of laboratory tests were conducted using a dynamic triaxial test system. The influential factors, including moisture content, confining pressure, vibration frequency, consolidation ratio, and cycle number on the dynamic characteristics were discussed. Experimental results indicate that specimens at low moisture contents tend to damage along the 30~ shear plane and they present brittle failure, while saturated specimens show swelling phenomenon and plastic failure. A redtiction in cohesion has been observed for unsaturated samples at large number of cycles, while it is opposite for the internal friction angle. For the saturated specimens, both the cohesion and internal friction angle decrease with increasing number of cycles.展开更多
文摘Based on the centrifugal model tests on railway embankments of expansive soil in Nanning Kunming railway,the author studied several embankments under different physical conditions. The stress and strain states and settlement of the embankments were analyzed, and the obtained results can be used as a reference to field construction.
基金sponsored by the National Natural Science Foundation of China(Grant Nos.52378365 and 52179109)Jiangsu Province Excellent Postdoctoral Program(Grant No.2023)China Scholarship Council-University of Ottawa Joint Scholarship.
文摘This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901).
文摘Slope stability analysis is a classical mechanical problem in geotechnical engineering and engineering geology.It is of great significance to study the stability evolution of expansive soil slopes for engineering construction in expansive soil areas.Most of the existing studies evaluate the slope stability by analyzing the limit equilibrium state of the slope,and the analysis method for the stability evolution considering the damage softening of the shear zone is lacking.In this study,the large deformation shear mechanical behavior of expansive soil was investigated by ring shear test.The damage softening characteristic of expansive soil in the shear zone was analyzed,and a shear damage model reflecting the damage softening behavior of expansive soil was derived based on the damage theory.Finally,by skillfully combining the vector sum method and the shear damage model,an analysis method for the stability evolution of the expansive soil slope considering the shear zone damage softening was proposed.The results show that the shear zone subjected to large displacement shear deformation exhibits an obvious damage softening phenomenon.The damage variable equation based on the logistic function can be well used to describe the shear damage characteristics of expansive soil,and the proposed shear damage model is in good agreement with the ring shear test results.The vector sum method considering the damage softening behavior of the shear zone can be well applied to analyze the stability evolution characteristics of the expansive soil slope.The stability factor of the expansive soil slope decreases with the increase of shear displacement,showing an obvious progressive failure behavior.
基金National Natural Science Foundation of China under Grant Nos.52208345,52008124,52268054the Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection under Grant No.SKLGP2022K002+1 种基金the Natural Science Foundation of Jiangsu Province under Grant No.BK20210479the Fundamental Research Funds for the Central Universities under Grant No.JUSRP121055。
文摘Earthquake-induced slope failures are common occurrences in engineering practice and pre-stressed anchor cables are an effective technique in maintaining slope stability,especially in areas that are prone to earthquakes.Furthermore,the soil at typical engineering sites also exhibit unsaturated features.Explicit considerations of these factors in slope stability estimations are crucial in producing accurate results.In this study,the seismic responses of expansive soil slopes stabilized by anchor cables is studied in the realm of kinematic limit analysis.A modified horizontal slice method is proposed to semi-analytically formulate the energy balance equation.An illustrative slope is studied to demonstrate the influences of suction,seismic excitations and anchor cables on the slope stability.The results indicate that the stabilizing effect of soil suction relates strongly to the seismic excitation and presents a sine shape as the seismic wave propagates.In higher and steeper slopes,the stabilizing effect of suction is more evident.The critical slip surface tends to be much more shallow as the seismic wave approaches the peak and vice versa.
基金great gratitude to National Key Research and Development Project(Grant No.2019YFC1509800)for their financial supportNational Nature Science Foundation of China(Grant No.12172211)for their financial support.
文摘Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature.
基金financially supported by the National Key R&D Program of China (Grant No. 2019YFC1509901)。
文摘Numerous engineering cases have demonstrated that the expansive soil channel slope remains susceptible to damage with the implementation of a rigid or closed protective structure. It is common for the protective structure to experience bulging failure due to excessive swelling pressure. To investigate the swelling pressure properties of expansive soil, the constant volume test was employed to study the influence of water content and reserved expansion deformation on the characteristics of swelling pressure in strong expansive soils, and also to explore the evolution mechanism of the swelling pressure. The findings demonstrate that the swelling pressure-time curve can be classified into swelling pressure-time softening and swelling pressure-time stability type. The swelling pressuretime curve of the specimen with low water content is the swelling pressure-time softening type, and the softening level will be weakened with increasing reserved expansion deformation. Besides, the maximum swelling pressure Psmax decreases with increasing water content and reserved expansion deformation, especially for expansion ratio η from 24% to 37%. The reserved deformation has little effect on reducing Psmax when it is beyond 7% of the expansion rate. The specimen with low water content has a more homogeneous structure due to the significant expansion-filling effect, and the fracture and reorganization of the aggregates in the specimens with low water content cause the swelling pressure-time softening behavior. In addition, the proposed swelling pressure-time curve prediction model has a good prediction on the test results. If necessary, a deformation space of about 7% expansion rate is recommended to be reserved in the engineering to reduce the swelling pressure except for keeping a stable water content.
文摘The wide engineered application of compacted expansive soils necessitates understanding their behavior under field conditions.The results of this study demonstrate how seasonal climatic variation and stress and boundary conditions individually or collectively influence the hydraulic and volume change behavior of compacted highly expansive soils.The cyclic wetting and drying(CWD)process was applied for two boundary conditions,i.e.constant stress(CS)and constant volume(CV),and for a wide range of axial stress states.The adopted CWD process affected the hydraulic and volume change behaviors of expansive soils,with the first cycle of wetting and drying being the most effective.The CWD process under CS conditions resulted in shrinkage accumulation and reduction in saturated hydraulic conductivity(k sat).On the other hand,CWD under CV conditions caused a reduction of swell pressure while has almost no impact on k sat.An elastic response to CWD was achieved after the third cycle for saturated hydraulic conductivity(k sat),the third to fourth cycle for the volume change potential under the CV conditions,and the fourth to fifth cycle for the volume change potential under the CS conditions.Finally,both swell pressure(s s)and saturated hydraulic conductivity(k sat)are not fundamental parameters of the expansive soil but rather depend on stress,boundary and wetting conditions.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509901)。
文摘When expansive soils in the original location are artificially transferred to landfill in different seasons,and subject to engineering activities afterwards,the corresponding deformation and stability of retaining structures become unpredictable.This necessitates the determination of lateral pressure coefficient at rest(k_(0) value)for expansive soils in landfill.Considering compaction,excavation of expansive soils,as well as construction of landfill in different seasons,series of stepwise loading and unloading consolidation tests at various moisture contents were carried out in this work to explore the evolution characteristics of k_(0) value and assess the dependence of k_(0) value on vertical stress and moisture content.Besides,scanning electron microscope(SEM)was used to track the change in microstructural features with vertical stresses.The results indicated that the k_(0) value of expansive soil shows a pronounced nonlinearity and is inextricably linked with vertical stress and moisture content,based on which a prediction formula to estimate the variation in k_(0) value with vertical stress during loading stage was proposed;there is a significant exponential increase in k_(0) value with overconsolidation ratio(OCR)during unloading stage,and OCR dominates the release of horizontal stress of expansive soil;SEM results revealed that with an increase in vertical stress,the anisotropy of expansive soil microstructure increases dramatically,causing a significant directional readjustment,which is macroscopically manifested as an initially rapid increase in k_(0) value;but when vertical stress increases to a critical value,the anisotropy of microstructure increases marginally,indicating a stable orientation occurring in the soil microstructure,which causes the k_(0) value to maintain a relatively stable value.
基金financially supported by Sichuan Huaxi Group Co.,ltd.(No.HXKX2019/015,No.HXKX2019/019,No.HXKX2018/030)the Open Fund of Sichuan Provincial Engineering Research Center of City Solid Waste Energy and Building Materials Conversion and Utilization Technology(No.GF2022ZC009)the Open Fund of Sichuan Engineering Research Center for Mechanical Properties and Engineering Technology of Unsaturated Soils(No.SC-FBHT2022-04)。
文摘Unsaturated expansive soil is widely distributed in China and has complex engineering properties.This paper proposes the unified hydraulic effect shear strength theory of unsaturated expansive soil based on the effective stress principle,swelling force principle,and soil–water characteristics.Considering the viscoelasticity and structural damage of unsaturated expansive soil during loading,a fractional hardening–damage model of unsaturated expansive soil was established.The model parameters were established on the basis of the proposed calculation method of shear strength and the triaxial shear experiment on unsaturated expansive soil.The proposed model was verified by the experimental data and a traditional damage model.The proposed model can satisfactorily describe the entire process of the strain-hardening law of unsaturated expansive soil.Finally,by investigating the damage variables of the proposed model,it was found that:(a)when the values of confining pressure and matric suction are close,the coupling of confining pressure and matric suction contributes more to the shear strength;(b)there is a damage threshold for unsaturated expansive soil,and is mainly reflected by strength criterion of infinitesimal body;(c)the strain hardening law of unsaturated expansive soil is mainly reflected by fractional derivative operator.
基金the financial supports from the Key Research and Development Program of Guangxi(No.GUIKE AB22080061)the Guangxi Transportation Industry Key Science and Technology Projects(No.GXJT-2020-02-08)+2 种基金the National Natural Science Foundation of China(No.52268062)the Guangxi Key Project of Nature Science Foundation(No.2020GXNSFDA238024)。
文摘To improve the soil and water stability of expansive soil slopes and reduce the probability of slope failure,novel protection systems based on polymer waterproof coatings(PWC)were used in this study.Herein,three groups of expansive soil slope model tests were designed to investigate the effects of polyester nonwovens and PWC(P-PWC)composite protection system,three-dimensional vegetation network and PWC(T-PWC)composite protection system,and nonprotection on the soil and water behavior in the slopes under precipitation–evaporation cycles.The results showed that the moisture change of P-PWC and T-PWC composite protected slopes was significantly smaller than that of bare slope,which reduced the sensitivity of slope moisture to environmental changes and improved its stability.The soil temperature of the slope protected by the P-PWC and T-PWC systems at a depth of 70 cm increased by 5.6℃ and 2.7℃,respectively.Using PWC composite protection systems exhibited better thermal storage performance,which could increase the utilization of shallow geothermal resources.Moreover,the maximum average crack widths of the bare slopes were 7.89 and 3.17 times those of the P-PWC and TPWC protected slopes,respectively,and the maximum average crack depths were 6.87 and 3 times those of the P-PWC and T-PWC protected slopes,separately.The PPWC protection system weakened the influence of hydro–thermal coupling on the slopes,inhibited the development of cracks on the slopes,and reduced the soil erosion.The maximum soil erosion of slopes protected by P-PWC and T-PWC systems was 332 and 164 times lower than that of bare slope,respectively.The P-PWC and T-PWC protection systems achieved excellent"anti-seepage and moisture retention"and anti-erosion effects,thus improving the soil and water stability of slopes.These findings can provide important guiding reference for controlling rainwater infiltration and soil erosion in expansive soil slope projects.
基金funded by the National Natural Science Foundation of China(Nos.11672066,12172085).
文摘This study examined the effects of using bagasse ash in replacement of ordinary Portland cement(OPC)in the treatment of expansive soils.The study concentrated on the compaction characteristics,volume change,compressive strength,splitting tensile strength,microstructure,California bearing ratio(CBR)value,and shear wave velocity of expansive soils treated with cement.Different bagasse ash replacement ratios were used to create soil samples.At varying curing times of 7,14,and 28 days,standard compaction tests,unconfined compressive strength tests,CBR tests,Brazilian split tensile testing,and bender element(BE)tests were carried out.According to X-ray diffraction(XRD)investigations,quartz and crystobalite make up the majority of the minerals in bagasse ash.Bagasse ash contains a variety of grain sizes,including numerous fiber-shaped particles,according to a scanning electronic microscope(SEM)test.For all of the treated specimens with various replacement ratios,the overall additive content has not changed.The results of the Brazilian split tensile tests demonstrate improved tensile strength for all specimens with various replacement proportions.A lower maximum dry density and a greater optimal water content would result from the substitution of bagasse ash.When the replacement ratio is not more than 20%,the CBR values of the parts replaced specimens are even higher than the cement treatments.The results of BE testing on the treated soils show that there is significant stiffness anisotropy but that it steadily diminishes with curing time and replacement ratio.According to the study,bagasse ash is a useful mineral additive,and the best replacement ratio(CBA20)is 20%.
基金supported by the National Natural Science Foundation of China(Grant No.41877251,Li,https://www.nsfc.gov.cn/)the Key Scientific Research Projects of Colleges and Universities in Henan Province(Grant No.22A560021,Yang,http://jyt.henan.gov.cn/,Grant No.23A560014,Cheng,http://jyt.henan.gov.cn/)+1 种基金the Key Scientific and Technological Support Projects of Tianjin Key R&D Plan(Grant No.19YFZCSF00820,Li,https://kxjs.tj.gov.cn/)the Special Fund for Basic Scientific Research and Young Backbone Teachers of Zhongyuan University of Technology(K2020QN015,2020XQG14,Cheng,https://www.zut.edu.cn/).
文摘Sixteen groups of comprehensive tests have been conducted to investigate the modifications in the physical properties of a weak expansive soil due to the addition of a cement jute fiber.The tests have been conducted to analyze the liquid plastic limit,the particle distribution and the free expansion rate.The results show that:(1)With an increase in the cement-jute fiber content,the free expansion rate of the modified expansive soil gradually decreases,however,such a rate rebounds when the fiber content exceeds 0.5%and the cement content exceeds 6%.(2)With an increase in the cement percentage,the particle unevenness coefficient(Cu)and curvature coefficient(Cc)of the modified expansive soil tend to grow gradually.The Cc coefficient reaches 1.0 when the cement content is 6%.The unevenness coefficient of 16 soil samples is greater than 5.0,however,the Cu coefficient decreases when the cement content reaches 6%.(3)The plastic limit of soil increases as the cement content is made higher,while the liquid limit and plastic index decrease gradually.When the content of the modified material is 2%+0.1%~2%+0.7%(Cement content+jute fiber content),the change of particle size distribution is most obvious.(4)When the contents of cement and jute fiber are is 6%and 0.5%,respectively,the modification induced in the physical properties of soil samples corresponds to the best case.
文摘A dynamic triaxial instrument was used to study the effects of different concentrations of sodium chloride and stress amplitudes on the dynamic properties of an expansive soil under cyclic loading.In particular,four parameters were considered in such a parametric investigation,namely,hysteresis curve morphology characteristic non-closure degreeεp,the ratio of the short and long axisα,the slope of the long axis k and the enclosed area S.The results show that with an increase in the sodium chloride concentration,the soil particle double electric layer becomes thinner,the distance between soil particles decreases,and the whole sample becomes denser.Theεp-N,α-N and S–N relation curves all show a decreasing trend.The ratio of plastic deformation to total deformation grows with increasing the dynamic stress amplitude,and the curves show an upwards trend.The k-N relationship curve displays an increasing trend with the concentration and a general downwards trend as the dynamic stress amplitude is made higher.This also indicates that sodium chloride solutions can improve the engineering properties of expansive soil to a certain extent.With an increase in the vibration times N,the shape of the hysteretic curve becomes narrower,and the whole soil exhibits a cyclic strain hardening.With the help of an exponential function,a model is introduced to predict the relationship between the concentration and the hysteretic curve.
基金The National Natural Science Foundation of China(No.51378121)
文摘In order to analyze the initial cracking behavior of highway embankment in the regions of expansive soil, the changes in peaks of tensile stress and their location on top of the embankment for a typical highway embankment section were simulated by ABAQUS. The simulation results indicate that the matric suction was a concave distribution on top of the expansive soil foundation and that it induced differential deformation of foundation and embankment. The peaks of tensile stress on top of the embankment are not located at a fixed site, but gradually move towards the shoulder following the evaporation duration. When the evaporation intensity is larger, the peak of tensile stress on top of embankment increases at a faster rate following the evaporation duration,and its location is closer to the shoulder. The thicker expansive soil layer helps the peaks of tensile stress to reach the critical tensile stress quickly, but the embankment cannot crack when the expansive soil layer is no more than 1.5m after 30d soil surface evaporation; the higher the embankment, the smaller the peak of tensile stress occurring on top of the highway embankment, and its location will be further away from the shoulder. Therefore, a higher embankment constructed on a thinner expansive soil layer can reduce the crack generation within the highway embankment.
基金Project(51978085)supported by the National Natural Science Foundation of ChinaProject(201808430102)supported by the China Scholarship Council+1 种基金Project(JTG-201507)supported by the Highway Industry Standard Compilation Project of Ministry of Transportation,ChinaProject(kfj180102)supported by the Open Fund of Changsha University of Science&Technology,China。
文摘The traditional stability analysis method of geogrid reinforced slopes does not consider the effect of lateral swelling,so it is not applicable to reinforced expansive soil slopes.This paper reports a new stability analysis method for geogrid reinforced expansive soil slopes.The additional pullout force of the free zone due to the lateral swelling and the anti-pullout safety factor of each geogrid layer were obtained by ensuring the overall stability of the reinforced slope.The optimum design was carried out to treat an expansive soil cut slope in Hubei Province,China,by changing the spacing and length of geogrid reinforcement.Calculation results show that the additional pullout force caused by lateral swelling has a great influence on the anti-pullout stability of geogrids,and the local stability of the reinforced slope will be overestimated if the swelling effect of soil in the free zone is not considered.
基金Projects(41102229,51109208)supported by the National Natural Science Foundation of ChinaProject(2011CDB407)supported by Natural Science Foundation of Hubei Province,ChinaProject supported by Qing Lan Project of Jiangsu Province,China
文摘The relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus of field unsaturated expansive soil in Nanning, Guangxi Province, China, was obtained by a direct or indirect method. Digital images of expansive soil of the surface fissure with different moisture contents were analyzed with the binarization statistic method. In addition, the fissure fractal dimension was computed with a self-compiled program. Combined with in situ seepage and loading plate tests, the relationship among the surface fissure ratio, moisture content, seepage coefficient and deformation modulus was initially established. The surface fissure ratio and moisture content show a linear relation, "y=-0.019 1x+1.028 5" for rufous expansive soil and "y=-0.07 1x+2.610 5" for grey expansive soil. Soil initial seepage coefficient and surface fissure ratio show a power function relation, "y=1× 10^-9exp(15.472x)" for rufous expansive soil and "y=5× 10^-7exp(4.209 6x)" for grey expansive soil. Grey expansive soil deformation modulus and surface fissure ratio show a power fimction relation of "y=3.935 7exp(0.993 6x)". Based on the binarization and fractal dimension methods, the results show that the surface fissure statistics can depict the fissure distribution in the view of two dimensions. And the evolvement behaviors of permeability and the deformation modulus can indirectly describe the developing state of the fissure. The analysis reflects that the engineering behaviors of unsaturated expansive soil are objectively influenced by fissure.
基金Project(2006BAB04A10) supported by the National Science and Technology Pillar Program during the 11th Five Year Plan of ChinaProject(51008117) supported by the National Natural Science Foundation of China
文摘Swelling and shrinkage due to moisture-change is one of the characteristics of the expansive soil,which is similar to the behavior of most materials under thermal effect,If the deformation is restricted,stress in expansive soil is caused by the swell-shrinking.The stress is defined as "moisture-change stress" and is adopted to analyze swell-shrinkage deformation based on the elasticity mechanics theory.The state when the total stress becomes equal to the soil tensile strength is considered as the cracking criterion as moisture-change increases.Then,the initial cracking mechanism due to evaporation is revealed as follows:Different rates of moisture loss at different depths result in greater shrinkage deformation on the surface while there is smaller shrinkage deformation at the underlayer in expansive soil;cracks will grow when the nonuniform shrinkage deformation increases to a certain degree.A theoretical model is established,which may be used to calculate the stress caused by moisture-change.The depth of initial cracks growing is predicted by the proposed model in expansive soil,A series of laboratory tests are carried out by exposing expansive soil samples with different moisture-changes.The process of crack propagation is investigated by resistivity method.The test results show good consistency with the predicted results by the proposed theoretical model.
文摘Volume instability of expansive soils due to moisture fluctuations is often disastrous,causing severe damages and distortions in the supported structures.It is,therefore,necessary to adequately improve the performance of such soils that they can favorably fulfil the post-construction stability requirements.This can be achieved through chemical stabilization using additives such as lime,cement and fly ash.In this paper,suitability of such additives under various conditions and their mechanisms are reviewed in detail.It is observed that the stabilization process primarily involves hydration,cation exchange,flocculation and pozzolanic reactions.The degree of stabilization is controlled by several factors such as additive type,additive content,soil type,soil mineralogy,curing period,curing temperature,delay in compaction,pH of soil matrix,and molding water content,including presence of nano-silica,organic matter and sulfate compounds.Provision of nano-silica not only improves soil packing but also accelerates the pozzolanic reaction.However,presence of deleterious compounds such as sulfate or organic matter can turn the treated soils unfavorable at times even worser than the unstabilized ones.
基金Projects(50378097, 50678177) supported by the National Natural Science Foundation of China
文摘The elastic differential equations of load-transfer of single pile either with applied loads on pile-top or only under the soil swelling were established,respectively,based on the theory of pile-soil interaction and the shear-deformation method.The derivation of analytic solution to load-transfer for single pile in expansive soil could hereby be obtained by means of superposition principle under expansive soils swelling.The comparison of two engineering examples was made to prove the credibility of the suggested method.The analyzed results show that this analytic solution can achieve high precision with few parameters required,indicating its' simplicity and practicability in engineering application.The employed method can contribute to determining the greatest tension along pile shaft resulting from expansive soils swelling and provide reliable bases for engineering design.The method can be employed to obtain various distributive curves of axial force,settlements and skin friction along the pile shaft with the changes of active depth,vertical movements of the surface and loads of pile-top.
基金Supported by the National Natural Science Foundation of China(40772185)the Knowledge Innovation Program of Chinese Academy of Sciences(kzcx2-yw-150)
文摘To better understand the dynamic properties of expansive clay treated with lime, a series of laboratory tests were conducted using a dynamic triaxial test system. The influential factors, including moisture content, confining pressure, vibration frequency, consolidation ratio, and cycle number on the dynamic characteristics were discussed. Experimental results indicate that specimens at low moisture contents tend to damage along the 30~ shear plane and they present brittle failure, while saturated specimens show swelling phenomenon and plastic failure. A redtiction in cohesion has been observed for unsaturated samples at large number of cycles, while it is opposite for the internal friction angle. For the saturated specimens, both the cohesion and internal friction angle decrease with increasing number of cycles.