The relationship between autogenous deformation and internal relative humidity(IRH) of high-strength concrete and high-strength expansive concrete were investigated.The experimental results indicate that,there exist...The relationship between autogenous deformation and internal relative humidity(IRH) of high-strength concrete and high-strength expansive concrete were investigated.The experimental results indicate that,there exists a good linear relationship between autogenous shrinkage and IRH of high-strength concrete but a nonlinear relationship between autogenous deformation and IRH of high-strength expansive concrete with expansive agent.The new autogenous deformation curve can be obtained by transforming the autogenous deformation data of high-strength expansive concrete,and there exists linear relationship between the autogenous deformation and IRH.The concept of "critical internal relative humidity" was proposed,which is defined as the value of IRH when autogenous deformation is zero,to effectively reflect the autogenous deformation characteristic of expansive concrete.展开更多
The low side friction of piles in coral sand results in the low bearing capacity of foundations.In this paper,expansive concrete pile is utilized to improve the bearing capacity of pile foundations in coral sand.Both ...The low side friction of piles in coral sand results in the low bearing capacity of foundations.In this paper,expansive concrete pile is utilized to improve the bearing capacity of pile foundations in coral sand.Both model tests and numerical simulation are performed to reveal the bearing mechanism of expansive concrete pile in coral sand.Results showed that the lateral earth pressure near pile increases obviously and the side friction of piles is improved,after adding expansion agent to the concrete.The horizontal linear expansion is 1.11%and the bearing capacity increased 41%for the pile,when 25%expansion agent is added.Results in finite element numerical simulation also show that ultimate bearing capacity increases with the increase of the linear expansion ratio.Besides,the area for obvious increase in side friction is below the surface of soil about three times the pile diameter,and the expansion leads to a high side friction sharing of the pile.Therefore,the cast-in-place expansive concrete pile is effective in improving the bearing capacity of piles in coral sand.展开更多
The expansive behaviors of the expensive concrete under different restraining conditions were systemically studied. The experimental results indicate that expansive deformation obviously increases before 10 days and t...The expansive behaviors of the expensive concrete under different restraining conditions were systemically studied. The experimental results indicate that expansive deformation obviously increases before 10 days and tends to be constant after 25 days regardless of the restraining conditions. The mixture ratio of expansive cement and restraining conditions are the main factors affecting expansive deformation. Self-stress can be obtained when the expansive deformation is restrained. The higher self-stress could be obtained when the expensive concrete is restrained by steel tube. For specimens under steel tube restraining, the wall thickness and the length of the steel tube have important influence on self-stress. Both the radial self-stress and axial self-stress in concrete core increase when wall thickness or length of the steel tube increases.展开更多
A China’s construction industry continues to develop,the amount of building construction has increased significantly,and construction technology has been continuously advancing.In particular,the application of expans...A China’s construction industry continues to develop,the amount of building construction has increased significantly,and construction technology has been continuously advancing.In particular,the application of expansive cement in building construction is becoming more popular.The correct use of construction technologies can not only speed up the progress of the construction project,but also reduce the project cost significantly.In this paper,the application of expansive cement building construction is discussed in detail,and the solutions of related problems are proposed.展开更多
Fiber Reinforced Polymer (FRP) composites are an effective material for strengthening circular concrete columns. The effectiveness of FRP confinement for square and rectangular columns is greatly reduced due to stre...Fiber Reinforced Polymer (FRP) composites are an effective material for strengthening circular concrete columns. The effectiveness of FRP confinement for square and rectangular columns is greatly reduced due to stress concentrations at the sharp comers and loss of the membrane effect at the fiat sides of the cross-section. Shape modification can eliminate the effects of column comers and flat sides, and thereby restore the membrane effect and improve the compressive behavior of FRP-confined square and rectangular concrete columns. Shape modification using chemical post-tensioning, achieved by using expansive cement concrete, is described and several mix designs for obtaining the optimal level of expansion are presented. In addition, parametric studies regarding the optimal geometry of the shape-modified cross-section are presented utilizing the analytical model.展开更多
A new type of concrete expansion agent has been successfully developed for the first time in the world by utilizing an industrial waste residue soda residue and an industrial wasteliquor.Adding 3%-6% of the agent int...A new type of concrete expansion agent has been successfully developed for the first time in the world by utilizing an industrial waste residue soda residue and an industrial wasteliquor.Adding 3%-6% of the agent into Portland cement enables a shrinkage compensating concrete to be prepared.Mortar and concrete containing this expansion agent have better shrinkage compensating and mechanical properties.The raw materials component,production process,technical properties,micro analysis of mortar made with this expansion agent,mechanism of expansion and research results are described in this article.The experimental results show that the new type of concrete expansion agent accords with the standard and its main mineral component is xCaO ySO 3 zAl 2O 3.展开更多
The numerical method and random anal- ysis of cement concreteexpansion are given. A mathematical procedure is presented whichincludes the nonlinear charac- teristis of the concrete. Anexpression is presented to pre- d...The numerical method and random anal- ysis of cement concreteexpansion are given. A mathematical procedure is presented whichincludes the nonlinear charac- teristis of the concrete. Anexpression is presented to pre- dict the linear restrained expansionof expansive concrete bar restrained by a steel rod. The resultsindicate a rapid change in strains and stresses within initial days,after which the change gradually decreases.展开更多
Conventional PCC pile technique has been widely used as embankment piles for highway construction in China. To further improve the PCC pile capacity, the expansive concrete technique has been applied to the PCC pile t...Conventional PCC pile technique has been widely used as embankment piles for highway construction in China. To further improve the PCC pile capacity, the expansive concrete technique has been applied to the PCC pile to replace the normal concrete recently. The use of expansive concrete for the PCC pile could increase the pile diameter as well as the contact pressure at the pile-soil interface due to the expansion process of concrete, which allows the improved PCC pile to provide higher capacity than the conventional PCC pile. This paper presents a theoretical model for the new improved PCC pile using expansive concrete technique. The model is formulated by assuming the PCC pile installation process as large strain undrained cylindrical cavity expansion and the subsequent pile shaft expansion combined with soil consolidation process is simulated by the small strain cylindrical cavity expansion combined with strain-controlled consolidation. Then, similarity solution technique is used to solve the problem of cavity expansion in modified cam Clay (MCC) model, while the strain-controlled consolidation is calculated through the finite difference method (FDM). Subsequently, the suitability of the cavity expansion solution in the interpretation of the PCC pile installation is verified by comparing the calculated excess pore pressure with the measured value in an instrumented field test. The stress changes and excess pore pressure during the PCC pile installation and subsequent pile shaft expansion are investigated by means of parametric study. The proposed theoretical model first reveals and quantifies the fundamental mechanism of the PCC pile using expansive concrete technique and it provides a theoretical basis for developing design methods of the new improved PCC pile in the future.展开更多
基金Funded by National Natural Science Foundation of china (No. 50508034)Guangxi Key Laboratory for the Advanced Materials and New Preparation Technology(No. 063006-5C-13)China,and National Basic Research Programof China(No.2009CB623201)
文摘The relationship between autogenous deformation and internal relative humidity(IRH) of high-strength concrete and high-strength expansive concrete were investigated.The experimental results indicate that,there exists a good linear relationship between autogenous shrinkage and IRH of high-strength concrete but a nonlinear relationship between autogenous deformation and IRH of high-strength expansive concrete with expansive agent.The new autogenous deformation curve can be obtained by transforming the autogenous deformation data of high-strength expansive concrete,and there exists linear relationship between the autogenous deformation and IRH.The concept of "critical internal relative humidity" was proposed,which is defined as the value of IRH when autogenous deformation is zero,to effectively reflect the autogenous deformation characteristic of expansive concrete.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51878103 and 41831282)the Innovation Group Science Foundation of the Natural Science Foundation of Chongqing,China(Grant No.cstc2020jcyj-cxtt X0003)。
文摘The low side friction of piles in coral sand results in the low bearing capacity of foundations.In this paper,expansive concrete pile is utilized to improve the bearing capacity of pile foundations in coral sand.Both model tests and numerical simulation are performed to reveal the bearing mechanism of expansive concrete pile in coral sand.Results showed that the lateral earth pressure near pile increases obviously and the side friction of piles is improved,after adding expansion agent to the concrete.The horizontal linear expansion is 1.11%and the bearing capacity increased 41%for the pile,when 25%expansion agent is added.Results in finite element numerical simulation also show that ultimate bearing capacity increases with the increase of the linear expansion ratio.Besides,the area for obvious increase in side friction is below the surface of soil about three times the pile diameter,and the expansion leads to a high side friction sharing of the pile.Therefore,the cast-in-place expansive concrete pile is effective in improving the bearing capacity of piles in coral sand.
基金Funded by the NSFC (No.50578027)the Key Subject Foundation of Henan Province (No.504906)the Doctor Foundation of Henan Polytechnic University (No.B2009-2)
文摘The expansive behaviors of the expensive concrete under different restraining conditions were systemically studied. The experimental results indicate that expansive deformation obviously increases before 10 days and tends to be constant after 25 days regardless of the restraining conditions. The mixture ratio of expansive cement and restraining conditions are the main factors affecting expansive deformation. Self-stress can be obtained when the expansive deformation is restrained. The higher self-stress could be obtained when the expensive concrete is restrained by steel tube. For specimens under steel tube restraining, the wall thickness and the length of the steel tube have important influence on self-stress. Both the radial self-stress and axial self-stress in concrete core increase when wall thickness or length of the steel tube increases.
文摘A China’s construction industry continues to develop,the amount of building construction has increased significantly,and construction technology has been continuously advancing.In particular,the application of expansive cement in building construction is becoming more popular.The correct use of construction technologies can not only speed up the progress of the construction project,but also reduce the project cost significantly.In this paper,the application of expansive cement building construction is discussed in detail,and the solutions of related problems are proposed.
文摘Fiber Reinforced Polymer (FRP) composites are an effective material for strengthening circular concrete columns. The effectiveness of FRP confinement for square and rectangular columns is greatly reduced due to stress concentrations at the sharp comers and loss of the membrane effect at the fiat sides of the cross-section. Shape modification can eliminate the effects of column comers and flat sides, and thereby restore the membrane effect and improve the compressive behavior of FRP-confined square and rectangular concrete columns. Shape modification using chemical post-tensioning, achieved by using expansive cement concrete, is described and several mix designs for obtaining the optimal level of expansion are presented. In addition, parametric studies regarding the optimal geometry of the shape-modified cross-section are presented utilizing the analytical model.
文摘A new type of concrete expansion agent has been successfully developed for the first time in the world by utilizing an industrial waste residue soda residue and an industrial wasteliquor.Adding 3%-6% of the agent into Portland cement enables a shrinkage compensating concrete to be prepared.Mortar and concrete containing this expansion agent have better shrinkage compensating and mechanical properties.The raw materials component,production process,technical properties,micro analysis of mortar made with this expansion agent,mechanism of expansion and research results are described in this article.The experimental results show that the new type of concrete expansion agent accords with the standard and its main mineral component is xCaO ySO 3 zAl 2O 3.
文摘The numerical method and random anal- ysis of cement concreteexpansion are given. A mathematical procedure is presented whichincludes the nonlinear charac- teristis of the concrete. Anexpression is presented to pre- dict the linear restrained expansionof expansive concrete bar restrained by a steel rod. The resultsindicate a rapid change in strains and stresses within initial days,after which the change gradually decreases.
基金supported by the National Natural Science Foundation of China(Grant No.51420105013)
文摘Conventional PCC pile technique has been widely used as embankment piles for highway construction in China. To further improve the PCC pile capacity, the expansive concrete technique has been applied to the PCC pile to replace the normal concrete recently. The use of expansive concrete for the PCC pile could increase the pile diameter as well as the contact pressure at the pile-soil interface due to the expansion process of concrete, which allows the improved PCC pile to provide higher capacity than the conventional PCC pile. This paper presents a theoretical model for the new improved PCC pile using expansive concrete technique. The model is formulated by assuming the PCC pile installation process as large strain undrained cylindrical cavity expansion and the subsequent pile shaft expansion combined with soil consolidation process is simulated by the small strain cylindrical cavity expansion combined with strain-controlled consolidation. Then, similarity solution technique is used to solve the problem of cavity expansion in modified cam Clay (MCC) model, while the strain-controlled consolidation is calculated through the finite difference method (FDM). Subsequently, the suitability of the cavity expansion solution in the interpretation of the PCC pile installation is verified by comparing the calculated excess pore pressure with the measured value in an instrumented field test. The stress changes and excess pore pressure during the PCC pile installation and subsequent pile shaft expansion are investigated by means of parametric study. The proposed theoretical model first reveals and quantifies the fundamental mechanism of the PCC pile using expansive concrete technique and it provides a theoretical basis for developing design methods of the new improved PCC pile in the future.