In this paper, we consider a risk model in which two types of individual claims, main claims and by-claims, are defined. Every by-claim is induced by the main claim randomly and may be delayed for one time period with...In this paper, we consider a risk model in which two types of individual claims, main claims and by-claims, are defined. Every by-claim is induced by the main claim randomly and may be delayed for one time period with a certain probability. The dividend policy that certain amount of dividends will be paid as long as the surplus is greater than a constant dividend barrier is also introduced into this delayed claims risk model. By means of the probability generating functions, formulae for the expected present value of total dividend payments prior to ruin are obtained for discrete-type individual claims. Explicit expressions for the corresponding results are derived for K n claim amount distributions. Numerical illustrations are also given.展开更多
In this paper, we investigate a Sparre Andersen risk model perturbed by diffusion with phase-type inter-claim times. We mainly study the distribution of maximum surplus prior to ruin. A matrix form of integro-differen...In this paper, we investigate a Sparre Andersen risk model perturbed by diffusion with phase-type inter-claim times. We mainly study the distribution of maximum surplus prior to ruin. A matrix form of integro-differential equation for this quantity is derived, and its solution can be expressed as a linear combination of particular solutions of the corresponding homogeneous integro-differential equations. By using the divided differences technique and nonnegative real part roots of Lundberg's equation, the explicit Laplace transforms of particular solutions are obtained. Specially, we can deduce closed-form results as long as the individual claim size is rationally distributed. We also give a concise matrix expression for the expected discounted dividend payments under a barrier dividend strategy. Finally, we give some examples to present our main results.展开更多
基金The NSF (11201217) of Chinathe NSF (20132BAB211010) of Jiangxi Province
文摘In this paper, we consider a risk model in which two types of individual claims, main claims and by-claims, are defined. Every by-claim is induced by the main claim randomly and may be delayed for one time period with a certain probability. The dividend policy that certain amount of dividends will be paid as long as the surplus is greater than a constant dividend barrier is also introduced into this delayed claims risk model. By means of the probability generating functions, formulae for the expected present value of total dividend payments prior to ruin are obtained for discrete-type individual claims. Explicit expressions for the corresponding results are derived for K n claim amount distributions. Numerical illustrations are also given.
基金Supported by National Basic Research Program of China (973 Program) 2007CB814905, National Natural Science Foundation of China (Grant No. 10871102), and the Keygrant Project of Chinese Ministry of Education (Grant No. 309009)
文摘In this paper, we investigate a Sparre Andersen risk model perturbed by diffusion with phase-type inter-claim times. We mainly study the distribution of maximum surplus prior to ruin. A matrix form of integro-differential equation for this quantity is derived, and its solution can be expressed as a linear combination of particular solutions of the corresponding homogeneous integro-differential equations. By using the divided differences technique and nonnegative real part roots of Lundberg's equation, the explicit Laplace transforms of particular solutions are obtained. Specially, we can deduce closed-form results as long as the individual claim size is rationally distributed. We also give a concise matrix expression for the expected discounted dividend payments under a barrier dividend strategy. Finally, we give some examples to present our main results.