An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIM...An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIMO OFDM) systems. In the proposed scheme, the recursive least squares (RLS) algorithm is applied to track the time varying channel impulse response (CIR) within several symbols. By using the tracked time varying CIR, the ICI are constructed and then cancelled from the received signal, thus reducing their impactions on the channel estimation. Moreover, based on an o ver sampled complex exponential basis expansion model ( OCE BEM), an improved channel predic tor is derived in order to improve the initial channel estimates accuracy of the iterative estimator. Simulation results show that ying scenarios with a smaller the proposed scheme outperforms the classic counterpart in time var cost of complexity.展开更多
基金Supported by the National Natural Science Foundation of China(6096200161071088)
文摘An enhanced expectation maximization ( with channel time variation is proposed for mobile EM) based iterative channel estimator for coping multiple input multi output orthogonal frequency division multiplexing (MIMO OFDM) systems. In the proposed scheme, the recursive least squares (RLS) algorithm is applied to track the time varying channel impulse response (CIR) within several symbols. By using the tracked time varying CIR, the ICI are constructed and then cancelled from the received signal, thus reducing their impactions on the channel estimation. Moreover, based on an o ver sampled complex exponential basis expansion model ( OCE BEM), an improved channel predic tor is derived in order to improve the initial channel estimates accuracy of the iterative estimator. Simulation results show that ying scenarios with a smaller the proposed scheme outperforms the classic counterpart in time var cost of complexity.