One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state...One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state models. In such cases, the contribution of intrinsic uncertainty becomes important and cannot be ignored. A detailed analysis of the intrinsic uncertainty of the aluminum-iron impedance-match experiment based on the measurement of velocities is presented. The influence of mirror-reflection approximation on the shocked pressure of Fe and intrinsic uncertainties from the equation of state uncertainty of standard material are quantified, Furthermore, the comparison of intrinsic uncertainties of four different experimental approaches is presented. It is shown that, compared with other approaches including the most widely used approach which relies on the measurements of the shock velocities of AI and Fe, the approach which relies on the measurement of the particle velocity of Al and the shock velocity of Fe has the smallest intrinsic uncertainty, which would promote such work to significantly improve the diagnostics precision in such an approach.展开更多
In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed thr...In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.展开更多
Currently, daylighting ducts system is widely used as a daylighting device. Generally, daylighting duct system efficiently takes light from outside during the day, and conveys daylight to required location through lig...Currently, daylighting ducts system is widely used as a daylighting device. Generally, daylighting duct system efficiently takes light from outside during the day, and conveys daylight to required location through light duct manufactured by high reflectance mirror. Daylighting duct system can convey daylight to underground space that has no windows opening to external space. Daylighting system is composed of light collection part, light guide part and light emission part. Efficiency of daylighting system is depending on type of each part used in the system. However, it is very difficult to estimate exact light flow in the system considering type of the parts. Authors performed measurement experiments to make clear the light flow with real-size model and miniature model of daylighting duct system. We discussed effect of type of the parts on efficiency of daylighting duct system.展开更多
Deflection is the most direct indicator that reflects the bearing capacity of the bridge and the overall stiffness. There are many ways to measure the deflection of Bridges, and the inclination angle method is the mos...Deflection is the most direct indicator that reflects the bearing capacity of the bridge and the overall stiffness. There are many ways to measure the deflection of Bridges, and the inclination angle method is the most commonly used indirect method, but the existing theory of inclination angle method is relatively complicated. Based on the facts of the bridge small inclination, this article proposes the method of obtaining the bridge deflection by the inclination of the secant line constructed from the adjacent measurement points. Firstly, according to the bending deformation curve of general simply supported beam, the deflection calculation formula of each measuring point is derived based on the assumption of small deformation and the inclination Angle of measuring point. Secondly, a large commercial finite element software ANSYS 10.0 is used to carry out numerical simulation on the simply-supported beam under concentrated load in mid-span, and the deflection results of the numerical simulation are compared and verified with the theoretical results of the proposed method. Finally, the measured deflection results of the simply-supported beam model under mid-span load are compared with the theoretical results of the proposed method. The verification results show that if the actual model is consistent with the theoretical model, the proposed method has good accuracy.展开更多
Boundary-layer height (BLH) under clear, altostratus and low stratus cloud conditions were measured by GPS sounding, wind profiler radar, and micro-pulse lidar during the atmospheric radiation measurement experiment...Boundary-layer height (BLH) under clear, altostratus and low stratus cloud conditions were measured by GPS sounding, wind profiler radar, and micro-pulse lidar during the atmospheric radiation measurement experiment from Sep. to Dec. 2008 in Shouxian, Anhui, China. Results showed that during daytime or nighttime, regardless of cloud conditions, the GPS sounding was the most accurate method for measuring BLH. Unfortunately, because of the long time gap between launchings, sounding data did not capture the diurnal evolution of the BLH. Thus, wind profile radar emerged as a promising instrument for direct and continuous measurement of the mixing height during the daytime, accurately determining BLH using the structure parameter of the electromagnetic refractive index. However, during nighttime, radar was limited by weak signal extraction and did not work well for determining the BLH of the stable boundary layer, often recording the BLH of the residual layer. While micro-pulse lidar recorded the evolution of BLH, it overestimated the BLH of the stable boundary layer. This method also failed to work under cloudy conditions because of the influence of water vapor. Future work needs to develop a method to determine BLH that combines the complimentary features of all three algorithms.展开更多
In order to maintain a desirable temperature level of electronic equipment at low pressure, the thermal control performance with pool boiling heat transfer of water was examined based on experimental measurement. The ...In order to maintain a desirable temperature level of electronic equipment at low pressure, the thermal control performance with pool boiling heat transfer of water was examined based on experimental measurement. The total setup was designed and performed to accomplish the experiment with the pressure range from 4.5 kPa to 20 kPa and the heat flux between 6 kW/m^2 and 20 kW/m^2. The chosen material of the heat surface was alu- minium alloy and the test cavity had the capability of varying the direction for the heat surface from vertical to horizontal directions. Through this study, the steady and transient temperature of the heat surface at different pressures and directions were obtained. Although the temperature non-uniformity of the heat surface from the centre to the edge could reach 10℃ for the aluminium alloy due to the varying pressures, the whole temperature results successfully satisfied with the thermal control requirements for electronic equipment, and the temperature control effect of the vertically oriented direction was better than that of the borizontally oriented direction. Moreover, the behaviour of bubbles generating and detaching from the heat surface was recorded by a high-resolution camera, so as to understand the pool boiling heat transfer mechanism at low-load heat flux. These pictures showed that the bubbles departure diameter becomes larger, and departure frequency was slower at low pressure, in contrast to 1.0 atm.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11305156 and 11305159
文摘One of the most challenging tasks in the laser-driven Hugoniot experiment is how to increase the reproducibility and precision of the experimental data to meet the stringent requirement in validating equation of state models. In such cases, the contribution of intrinsic uncertainty becomes important and cannot be ignored. A detailed analysis of the intrinsic uncertainty of the aluminum-iron impedance-match experiment based on the measurement of velocities is presented. The influence of mirror-reflection approximation on the shocked pressure of Fe and intrinsic uncertainties from the equation of state uncertainty of standard material are quantified, Furthermore, the comparison of intrinsic uncertainties of four different experimental approaches is presented. It is shown that, compared with other approaches including the most widely used approach which relies on the measurements of the shock velocities of AI and Fe, the approach which relies on the measurement of the particle velocity of Al and the shock velocity of Fe has the smallest intrinsic uncertainty, which would promote such work to significantly improve the diagnostics precision in such an approach.
基金Project(51675100)supported by the National Natural Science Foundation of ChinaProject(2016ZX04004008)supported by the National Numerical Control Equipment Major Project of ChinaProject(6902002116)supported by the Foundation of Certain Ministry of China
文摘In the process of thin-wall parts assembly for an antenna,the parts assembly deformation deviation is occurring due to the riveting assembly.In view of the riveting assembly deformation problems,it can be analyzed through transient and static simulation.In this work,the theoretical deformation model for riveting assembly is established with round head rivet.The simulation analysis for riveting deformation is carried out with the riveting assembly piece including four rivets,which comparing with the measuring points experiment results of riveting test piece through dealing with the experimental data using the point coordinate transform method and the space line fitting method.Simultaneously,the deformation deviation of the overall thin-wall parts assembly structure is analyzed through finite element simulation;and its results are verified by the measuring experiment for riveting assembly with the deformation deviation of some key points on the thin-wall parts.Through the comparison analysis,it is shown that the simulation results agree well with the experimental results,which proves the correctness and effectiveness of the theoretical analysis,simulation results and the given experiment data processing method.Through the study on the riveting assembly for thin-wall parts,it will provide a theoretical foundation for improving thin-wall parts assembly quality of large antenna in future.
文摘Currently, daylighting ducts system is widely used as a daylighting device. Generally, daylighting duct system efficiently takes light from outside during the day, and conveys daylight to required location through light duct manufactured by high reflectance mirror. Daylighting duct system can convey daylight to underground space that has no windows opening to external space. Daylighting system is composed of light collection part, light guide part and light emission part. Efficiency of daylighting system is depending on type of each part used in the system. However, it is very difficult to estimate exact light flow in the system considering type of the parts. Authors performed measurement experiments to make clear the light flow with real-size model and miniature model of daylighting duct system. We discussed effect of type of the parts on efficiency of daylighting duct system.
文摘Deflection is the most direct indicator that reflects the bearing capacity of the bridge and the overall stiffness. There are many ways to measure the deflection of Bridges, and the inclination angle method is the most commonly used indirect method, but the existing theory of inclination angle method is relatively complicated. Based on the facts of the bridge small inclination, this article proposes the method of obtaining the bridge deflection by the inclination of the secant line constructed from the adjacent measurement points. Firstly, according to the bending deformation curve of general simply supported beam, the deflection calculation formula of each measuring point is derived based on the assumption of small deformation and the inclination Angle of measuring point. Secondly, a large commercial finite element software ANSYS 10.0 is used to carry out numerical simulation on the simply-supported beam under concentrated load in mid-span, and the deflection results of the numerical simulation are compared and verified with the theoretical results of the proposed method. Finally, the measured deflection results of the simply-supported beam model under mid-span load are compared with the theoretical results of the proposed method. The verification results show that if the actual model is consistent with the theoretical model, the proposed method has good accuracy.
文摘Boundary-layer height (BLH) under clear, altostratus and low stratus cloud conditions were measured by GPS sounding, wind profiler radar, and micro-pulse lidar during the atmospheric radiation measurement experiment from Sep. to Dec. 2008 in Shouxian, Anhui, China. Results showed that during daytime or nighttime, regardless of cloud conditions, the GPS sounding was the most accurate method for measuring BLH. Unfortunately, because of the long time gap between launchings, sounding data did not capture the diurnal evolution of the BLH. Thus, wind profile radar emerged as a promising instrument for direct and continuous measurement of the mixing height during the daytime, accurately determining BLH using the structure parameter of the electromagnetic refractive index. However, during nighttime, radar was limited by weak signal extraction and did not work well for determining the BLH of the stable boundary layer, often recording the BLH of the residual layer. While micro-pulse lidar recorded the evolution of BLH, it overestimated the BLH of the stable boundary layer. This method also failed to work under cloudy conditions because of the influence of water vapor. Future work needs to develop a method to determine BLH that combines the complimentary features of all three algorithms.
基金financially supported by the Provincial Natural Science Foundation of Heilongjiang(E2017041)the National Natural Science Foundation of China(No.51776053)
文摘In order to maintain a desirable temperature level of electronic equipment at low pressure, the thermal control performance with pool boiling heat transfer of water was examined based on experimental measurement. The total setup was designed and performed to accomplish the experiment with the pressure range from 4.5 kPa to 20 kPa and the heat flux between 6 kW/m^2 and 20 kW/m^2. The chosen material of the heat surface was alu- minium alloy and the test cavity had the capability of varying the direction for the heat surface from vertical to horizontal directions. Through this study, the steady and transient temperature of the heat surface at different pressures and directions were obtained. Although the temperature non-uniformity of the heat surface from the centre to the edge could reach 10℃ for the aluminium alloy due to the varying pressures, the whole temperature results successfully satisfied with the thermal control requirements for electronic equipment, and the temperature control effect of the vertically oriented direction was better than that of the borizontally oriented direction. Moreover, the behaviour of bubbles generating and detaching from the heat surface was recorded by a high-resolution camera, so as to understand the pool boiling heat transfer mechanism at low-load heat flux. These pictures showed that the bubbles departure diameter becomes larger, and departure frequency was slower at low pressure, in contrast to 1.0 atm.