The interfacial heat transfer coefficient(IHTC)is one of the main input parameters required by casting simulation software.It plays an important role in the accurate modeling of the solidification process.However,its ...The interfacial heat transfer coefficient(IHTC)is one of the main input parameters required by casting simulation software.It plays an important role in the accurate modeling of the solidification process.However,its value is not easily identifiable by means of experimental methods requiring temperature measurements during the solidification process itself.For these reasons,an optimal experiment design was performed in this study to determine the optimal position for the temperature measurement and the optimal thickness of the rectangular cast iron part.This parameter was identified using an inverse technique.In particular,two different algorithms were used:Levenberg Marquard(LM)and Monte Carlo(MC).A numerical model of the solidification process was associated with the optimization algorithm.The temperature was measured at different positions from the mould/metal interface at d=0 mm(mould/metal interface),30 mm,60 mm and 90 mm.the thicknesses of the cast part were:L1=40 mm,60 mm and 80 mm.A comparative study on the IHTC identification was then carried out by varying the initial value of the IHTC between 500 Wm^(-2)K^(-1) and 1050 Wm^(-2)K^(-1).Results showed that the MC algorithm used for estimating the IHTC gives the best results,and the optimal position was at d=30 mm,the position closest to the mould/metal interface,for the lowest thickness L1=40 mm.展开更多
Experiment statistical method and genetic algorithms based optimization method are used to obtain the optimum differential gear ratio for heavy truck that provides best fuel consumption when changing the working condi...Experiment statistical method and genetic algorithms based optimization method are used to obtain the optimum differential gear ratio for heavy truck that provides best fuel consumption when changing the working condition that affects its torque and speed range. The aim of the study is to obtain the optimum differential gear ratio with fast and accurate optimization calculation without affecting drivability characteristics of the vehicle according to certain driving cycles that represent the new working conditions of the truck. The study is carried on a mining dump truck YT3621 with 9 for- ward shift manual transmission. Two loading conditions, no load and 40 t, and four on road real driving cycles have been discussed. The truck powertrain is modeled using GT-drive, and DOE -post processing tool of the GT-suite is used for DOE analysis and genetic algorithm optimization.展开更多
The uniform experiment design is an effective way of optimizing technology scheme for refining the grain size during multistage deformation. In this paper, it is adopted to evaluate the effect of each technology param...The uniform experiment design is an effective way of optimizing technology scheme for refining the grain size during multistage deformation. In this paper, it is adopted to evaluate the effect of each technology parameter on final grain size of AISI H13 hot work tool steel during multistage deformation. It has been verified that the technology scheme for refining the final grain size can be determined rapidly and efficiently with the aid of the uniform design. The results show that the deformation parameters and the intermission time after deformation of the first stage affect the final grain size remarkably. For AISI H13 hot work tool steel, the final grain size can be refined notably when deformation parameters for the first stage are set as follows: a deformation temperature range of 1?025 1?085 ℃; a true strain of above 0.26 and the interpass time between the first and the second stage of deformation less than 10 s.展开更多
The data topology structure of uniform experiment design (UD) is too complex to be reasonable regressed. In this paper, the principle and method of distinguish the training data and testing data were described to make...The data topology structure of uniform experiment design (UD) is too complex to be reasonable regressed. In this paper, the principle and method of distinguish the training data and testing data were described to make a reasonable regression when uniform experiment design combined with support vector regression (SVR). Two equivalent ways which were the smallest enclosing hypersphere perceptron (SEH) and the enclosing simplex perceptron (ES) were provided to discover the topology relationship of the process parameter datum. To give an application, a series of experiments about laser cladding layer quality were conducted by UD to get the relationship of load, velocity and wearing capacity. Results showed that only the testing datum recommended by the two perceptrons got a good forecasting by SVR. Therefore, the two perceptrons could guide experiments with process parameter data of complex topology structure. Further, the application could be extended over a much wider field of experiments.展开更多
In recent years, virtual simulation experiments have been widely used in education. However, at present, academic research on virtual simulation experiments mostly focuses on key technologies, and there are few emotio...In recent years, virtual simulation experiments have been widely used in education. However, at present, academic research on virtual simulation experiments mostly focuses on key technologies, and there are few emotional studies on virtual experiments. Based on the three-layer model of emotional design theory, this paper puts forward the method strategy of emotional simulation design in virtual simulation experiment, in order to provide some reference value for the design of virtual simulation experiment.展开更多
Efficient experiment design is of great significance for the validation of simulation model with high nonlinearity and large input space.Excessive validation experiment raises the cost while insufficient test increase...Efficient experiment design is of great significance for the validation of simulation model with high nonlinearity and large input space.Excessive validation experiment raises the cost while insufficient test increases the risks of accepting an invalid model.In this paper,an adaptive sequential experiment design method combining global exploration criterion and local exploitation criterion is proposed.The exploration criterion utilizes discrepancy metric to improve the space-filling property of the design points while the exploitation criterion employs the leave one out error to discover informative points.To avoid the clustering of samples in the local region,an adaptive weight updating approach is provided to maintain the balance between exploration and exploitation.Besides,the credibility distribution function characterizing the relationship between the input and result credibility is introduced to support the model validation experiment design.Finally,six benchmark problems and an engineering case are applied to examine the performance of the proposed method.The experiments indicate that the proposed method achieves satisfactory performance for function approximation in accuracy and convergence.展开更多
Simulation is a powerful technique in evaluating and improving the performance of complex systems.In order to improve the efficiency of simulation experiment design,analysis and evaluation,auxiliary tools are required...Simulation is a powerful technique in evaluating and improving the performance of complex systems.In order to improve the efficiency of simulation experiment design,analysis and evaluation,auxiliary tools are required.Unfortunately,existing tools are usually not meeting the requirements of simulation.Moreover,the restricted interfaces,reusability and expandability influence their efficiency to a certain extent.In this paper,an integrated software environment,HIT-SEDAES,is designed for solving these problems.A process model of simulation experiment design,analysis and evaluation is introduced to guide the development of the software environment.And several solutions are proposed to solve key problems in this development.Finally,an application is used to illustrate how the software environment works for the problems of model validation,effectiveness evaluation and performance analysis.展开更多
The paper is devoted to the elastostatic calibration of industrial robots, which is used for precise machining of large-dimensional parts made of composite materials. In this technological process, the interaction bet...The paper is devoted to the elastostatic calibration of industrial robots, which is used for precise machining of large-dimensional parts made of composite materials. In this technological process, the interaction between the robot and the workpiece causes essential elastic deflections of the manipulator components that should be compensated by the robot controller using relevant elastostatic model of this mechanism. To estimate parameters of this model, an advanced calibration technique is applied that is based on the non-linear experiment design theory, which is adopted for this particular application. In contrast to previous works, it is proposed a concept of the user-defined test-pose, which is used to evaluate the calibration experiments quality. In the frame of this concept, the related optimization problem is defined and numerical routines are developed, which allow generating optimal set of manipulator configurations and corresponding forces/torques for a given number of the calibration experiments. Some specific kinematic constraints are also taken into account, which insure feasibility of calibration experiments for the obtained configurations and allow avoiding collision between the robotic manipulator and the measurement equipment. The efficiency of the developed technique is illustrated by an application example that deals with elastostatic calibration of the serial manipulator used for robot-based machining.展开更多
An optimal experiment design (DED) with respect to the use of designing model-base controller was studied. The mean squared error at the setpoint is chosen as the performance criterion. Simple design formulas are deri...An optimal experiment design (DED) with respect to the use of designing model-base controller was studied. The mean squared error at the setpoint is chosen as the performance criterion. Simple design formulas are derived based on the asymptotic theory. The signal is used for the open loop experiment. The design constraint is the power of the process signal or the process input signal. The results give guideline for identification application.展开更多
Owing to rapid advances in the next-generation sequencing technology, the cost of DNA sequencing has been reduced by over several orders of magnitude. However, genomic sequencing of individuals at the population scale...Owing to rapid advances in the next-generation sequencing technology, the cost of DNA sequencing has been reduced by over several orders of magnitude. However, genomic sequencing of individuals at the population scale is still restricted to a few model species due to the huge challenge of constructing libraries for thousands of samples. Meanwhile, pooled sequencing provides a cost-effective alternative to sequencing individuals separately, which could vastly reduce the time and cost for DNA library preparation. Technological improvements, together with the broad range of biological research questions that require large sample sizes, mean that pooled sequencing will continue to complement the sequencing of individual genomes and become increasingly important in the foreseeable future. However, simply mixing samples together for sequencing makes it impossible to identify reads that belongs to each sample. Barcoding technology could help to solve this problem, nonetheless, currently, barcoding every sample is costly especially for large-scale samples. An alternative to barcoding is combinatorial pooled sequencing which employs pooling pattern rather than short DNA barcodes to encode each sample. In combinatorial pooled sequencing, samples are mixed into few pools according to a carefully designed pooling strategy which allows the sequencing data to be decoded to identify the reads that belongs to the sample that are unique or rare in the population. In this review, we mainly survey the experiment design and decoding procedure for the combinatorial pooled sequencing applied in rare variant and rare haplotype carriers screening, complex genome assembling and single individual haplotyping.展开更多
Cavitation is one of the most important performance of centrifugal pumps. However, the current optimization works of centrifugal pump are mostly focusing on hydraulic efficiency only, which may result in poor cavitati...Cavitation is one of the most important performance of centrifugal pumps. However, the current optimization works of centrifugal pump are mostly focusing on hydraulic efficiency only, which may result in poor cavitation performance. Therefore, it is necessary to find an appropriate solution to improve cavitation performance with acceptable efficiency. In this paper, to improve the cavitation performance of a centrifugal pump with a vaned diffuser, the influence of impeller geometric parameters on the cavitation of the pump is investigated using the orthogonal design of experiment (DOE) based on computational fluid dynamics. The impeller inlet diameter D1, inlet incidence angle Aft, and blade wrap angle ~0 are selected as the main impeller geometric parameters and the orthogonal experiment of L9(3"3) is performed. Three-dimensional steady simulations for cavitation are conducted by using constant gas mass fraction model with second-order upwind, and the predicated cavitation performance is validated by laboratory experiment. The optimization results are obtained by the range analysis method to improve cavitation performance without obvious decreasing the efficiency of the centrifugal pump. The internal flow of the pump is analyzed in order to identify the flow behavior that can affect cavitation performance. The results show that D1 has the greatest influence on the pump cavitation and the final optimized impeller provides better flow distribution at blade leading edge. The final optimized impeller accomplishes better cavitation and hydraulic performance and the NPSHR decreases by 0.63m compared with the original one. The presented work supplies a feasible route in engineering practice to optimize a centrifugal pump impeller for better cavitation performance.展开更多
Four process parameters, pad diameter, stencil thickness, ball diameter and stand-off were chosen as four control factors. By using an L25 (5^6 ) orthogonal array the ceramic ball grid array ( CBGA ) solder joints...Four process parameters, pad diameter, stencil thickness, ball diameter and stand-off were chosen as four control factors. By using an L25 (5^6 ) orthogonal array the ceramic ball grid array ( CBGA ) solder joints which have 25 different combinations of process parameters were designed. The numerical models of all the 25 CBGA solder joints were developed using the Sugrace Evolver. Utilizing the sugrace coordinate exported from the 25 CBGA solder joints numerical models, the finite element analysis models were set up and the nonlinear finite element analysis of the CBGA solder joints under thermal cycles were pegrormed by ANSYS. The thermal fatigue life of CBGA solder joint was calculated using Coffin-Manson equation. Based on the calculated thermal fatigue life results, the range analysis and the variance analysis were pegrormed. The results show that the fatigue life of CBGA solder joint is affected by the pad diameter, the stencil thickness, the ball diameter and the stand-off in a descending order, the best combination of process parameters results in the longest fatigue life is 0.07 mm stand-off, 0.125 mm stencil thickness of, 0.85 mm ball diameter and 0. 89 mm pad diameter. With 95% confidence the pad diameter has a significant effect on the reliability of CBGA solder joints whereas the stand-off, the stencil thickness and the ball diameter have little effect on the reliability of CBGA solder joints.展开更多
Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment impro...Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.展开更多
Supersaturated design is essentially a fractional factorial design in which the number of potential effects is greater than the number of runs. In this article, the supersaturated design is applied to a computer exper...Supersaturated design is essentially a fractional factorial design in which the number of potential effects is greater than the number of runs. In this article, the supersaturated design is applied to a computer experiment through an example of steady current circuit model problem. A uniform mixed-level supersaturated design and the centered quadratic regression model are used. This example shows that supersaturated design and quadratic regression modeling method are very effective for screening effects and building the predictor. They are not only useful in computer experiments but also in industrial and other scientific experiments.展开更多
In sensitivity experiments, the response is binary and each experimental unit has a critical stimulus level that cannot be observed directly. It is often of interest to estimate extreme quantiles of the distribution o...In sensitivity experiments, the response is binary and each experimental unit has a critical stimulus level that cannot be observed directly. It is often of interest to estimate extreme quantiles of the distribution of these critical stimulus levels over the tested products. For this purpose a new sequential scheme is proposed with some commonly used models. By using the bootstrap repeated-sampling principle, reasonable prior distributions based on a historic data set are specified. Then, a Bayesian strategy for the sequential procedure is provided and the estimator is given. Further, a high order approximation for such an estimator is explored and its consistency is proven. A simulation study shows that the proposed method gives superior performances over the existing methods.展开更多
Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, c...Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, computer modeling of nickel ore leaching process be- came a need and a challenge. In this paper, the design of experiments (DOE) theory was used to determine the optimal experimental design plan matrix based on the D optimality criterion. In the high-pressure sulfuric acid leaching (HPSAL) process for nickel laterite in "Rudjinci" ore in Serbia, the temperature, the sulfuric acid to ore ratio, the stirring speed, and the leaching time as the predictor variables, and the degree of nickel extraction as the response have been considered. To model the process, the multiple linear regression (MLR) and response surface method (RSM), together with the two-level and four-factor full factorial central composite design (CCD) plan, were used. The proposed re- gression models have not been proven adequate. Therefore, the artificial neural network (ANN) approach with the same experimental plan was used in order to reduce operational costs, give a better modeling accuracy, and provide a more successful process optimization. The model is based on the multi-layer neural networks with the back-propagation (BP) learning algorithm and the bipolar sigmoid activation function.展开更多
Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were perfo...Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were performed. By this method, A357-Si C nanocomposites with 0.5, 1.0 and 1.5 wt.% Si C were fabricated at three different frequencies(10, 35 and 60 Hz) in the experimental stage. The microstructural evolution was characterized by scanning electron and optical microscopes, and the mechanical properties were investigated using hardness and roomtemperature uniaxial tensile tests. The results showed that the homogeneous distribution of Si C nanoparticles leads to the microstructure evolution from dendritic to non-dendritic form and a reduction of size by 73.9%. Additionally, based on DODOE, F-values of 44.80 and 179.64 were achieved for yield stress(YS) and ultimate tensile strength(UTS), respectively, implying that the model is significant and the variables(Si C fraction and stirring frequency) were appropriately selected. The optimum values of the Si C fraction and stirring frequency were found to be 1.5 wt.% and 60 Hz, respectively. In this case, YS and UTS for A357-Si C nanocomposites were obtained to be 120 and 188 MPa(57.7% and 57.9 % increase compared with those of the as-cast sample), respectively.展开更多
Identification of process parameters,their effects and contributions to the outcomes of the system using experimental approach could be a daunting,time consuming,and costly course.Using proper statistical methods,i.e....Identification of process parameters,their effects and contributions to the outcomes of the system using experimental approach could be a daunting,time consuming,and costly course.Using proper statistical methods,i.e.,Taguchi method,could significantly reduce the number of required experiments and statistical significance of the parameter can be identified.Friction stir welding is one of those welding techniques with many parameters which have different effects on the quality of the welds.In friction stir welding the tool rotational speed(RPM)and transverse speed(mm/min)influence the strength(i.e.,hardness distribution)of the stirred zone.In this study,these two factors are investigated to determine the effect they will have on the hardness in the stirred zone of the friction stir welds and how the two factors are related to one another for as-cast magnesium alloy AM60 with nominal chemical composition of Mg-(5.5-6.5)Al-(0.24-0.6)Mn-0.22Zn-0.1Si.Experimental data was taken at three different tool rotational speeds and three different transverse speeds.The data obtained was then analyzed using a 32 factorial design to find the contribution of these parameters.It was determined that both tool rotational speed and transverse speed possess significant effects on the stir zone hardness.Also,the interactions between the two factors were statistically assessed.展开更多
Recently, some results have been acquired with the Monte- Carlo statistical experiments in the design of ocean en gineering. The results show that Monte-Carlo statistical experiments can be widely used in estimating t...Recently, some results have been acquired with the Monte- Carlo statistical experiments in the design of ocean en gineering. The results show that Monte-Carlo statistical experiments can be widely used in estimating the parameters of wave statistical distributions, checking the probability model of the long- term wave extreme value distribution under a typhoon condition and calculating the failure probability of the ocean platforms.展开更多
One promising joining method for NiTi-SMA (shape memory alloy)-components is laser welding. This joining technology bears huge potential regarding process automation and mechanical properties as well as durability, ...One promising joining method for NiTi-SMA (shape memory alloy)-components is laser welding. This joining technology bears huge potential regarding process automation and mechanical properties as well as durability, especially within the field of small- and medium-sized actuators. However, there is still need for research due to unsolved issues influencing the microstructure and thus effecting mechanical properties as well as SMA-characteristics of these joints. Therefore, the purpose of this paper is the evaluation of quality parameters of NiTi-NiTi-wire-joints. For this purpose, design of experiments with a fractional factorial design is used for the investigation, because of its high potential to decrease experimental effort. This paper provides a basis for future research in the field of SMA-actuators and joining.展开更多
文摘The interfacial heat transfer coefficient(IHTC)is one of the main input parameters required by casting simulation software.It plays an important role in the accurate modeling of the solidification process.However,its value is not easily identifiable by means of experimental methods requiring temperature measurements during the solidification process itself.For these reasons,an optimal experiment design was performed in this study to determine the optimal position for the temperature measurement and the optimal thickness of the rectangular cast iron part.This parameter was identified using an inverse technique.In particular,two different algorithms were used:Levenberg Marquard(LM)and Monte Carlo(MC).A numerical model of the solidification process was associated with the optimization algorithm.The temperature was measured at different positions from the mould/metal interface at d=0 mm(mould/metal interface),30 mm,60 mm and 90 mm.the thicknesses of the cast part were:L1=40 mm,60 mm and 80 mm.A comparative study on the IHTC identification was then carried out by varying the initial value of the IHTC between 500 Wm^(-2)K^(-1) and 1050 Wm^(-2)K^(-1).Results showed that the MC algorithm used for estimating the IHTC gives the best results,and the optimal position was at d=30 mm,the position closest to the mould/metal interface,for the lowest thickness L1=40 mm.
文摘Experiment statistical method and genetic algorithms based optimization method are used to obtain the optimum differential gear ratio for heavy truck that provides best fuel consumption when changing the working condition that affects its torque and speed range. The aim of the study is to obtain the optimum differential gear ratio with fast and accurate optimization calculation without affecting drivability characteristics of the vehicle according to certain driving cycles that represent the new working conditions of the truck. The study is carried on a mining dump truck YT3621 with 9 for- ward shift manual transmission. Two loading conditions, no load and 40 t, and four on road real driving cycles have been discussed. The truck powertrain is modeled using GT-drive, and DOE -post processing tool of the GT-suite is used for DOE analysis and genetic algorithm optimization.
基金TheNationalNaturalScienceFoundationofChina (No .5 0 0 75 0 5 3)
文摘The uniform experiment design is an effective way of optimizing technology scheme for refining the grain size during multistage deformation. In this paper, it is adopted to evaluate the effect of each technology parameter on final grain size of AISI H13 hot work tool steel during multistage deformation. It has been verified that the technology scheme for refining the final grain size can be determined rapidly and efficiently with the aid of the uniform design. The results show that the deformation parameters and the intermission time after deformation of the first stage affect the final grain size remarkably. For AISI H13 hot work tool steel, the final grain size can be refined notably when deformation parameters for the first stage are set as follows: a deformation temperature range of 1?025 1?085 ℃; a true strain of above 0.26 and the interpass time between the first and the second stage of deformation less than 10 s.
文摘The data topology structure of uniform experiment design (UD) is too complex to be reasonable regressed. In this paper, the principle and method of distinguish the training data and testing data were described to make a reasonable regression when uniform experiment design combined with support vector regression (SVR). Two equivalent ways which were the smallest enclosing hypersphere perceptron (SEH) and the enclosing simplex perceptron (ES) were provided to discover the topology relationship of the process parameter datum. To give an application, a series of experiments about laser cladding layer quality were conducted by UD to get the relationship of load, velocity and wearing capacity. Results showed that only the testing datum recommended by the two perceptrons got a good forecasting by SVR. Therefore, the two perceptrons could guide experiments with process parameter data of complex topology structure. Further, the application could be extended over a much wider field of experiments.
文摘In recent years, virtual simulation experiments have been widely used in education. However, at present, academic research on virtual simulation experiments mostly focuses on key technologies, and there are few emotional studies on virtual experiments. Based on the three-layer model of emotional design theory, this paper puts forward the method strategy of emotional simulation design in virtual simulation experiment, in order to provide some reference value for the design of virtual simulation experiment.
基金supported by the National Natural Science Foundation of China(No.61627810)。
文摘Efficient experiment design is of great significance for the validation of simulation model with high nonlinearity and large input space.Excessive validation experiment raises the cost while insufficient test increases the risks of accepting an invalid model.In this paper,an adaptive sequential experiment design method combining global exploration criterion and local exploitation criterion is proposed.The exploration criterion utilizes discrepancy metric to improve the space-filling property of the design points while the exploitation criterion employs the leave one out error to discover informative points.To avoid the clustering of samples in the local region,an adaptive weight updating approach is provided to maintain the balance between exploration and exploitation.Besides,the credibility distribution function characterizing the relationship between the input and result credibility is introduced to support the model validation experiment design.Finally,six benchmark problems and an engineering case are applied to examine the performance of the proposed method.The experiments indicate that the proposed method achieves satisfactory performance for function approximation in accuracy and convergence.
基金supported by the National Natural Science Foundation of China(61403097)the Fundamental Research Funds for the Central Universities(HIT.NSRIF.2015035).
文摘Simulation is a powerful technique in evaluating and improving the performance of complex systems.In order to improve the efficiency of simulation experiment design,analysis and evaluation,auxiliary tools are required.Unfortunately,existing tools are usually not meeting the requirements of simulation.Moreover,the restricted interfaces,reusability and expandability influence their efficiency to a certain extent.In this paper,an integrated software environment,HIT-SEDAES,is designed for solving these problems.A process model of simulation experiment design,analysis and evaluation is introduced to guide the development of the software environment.And several solutions are proposed to solve key problems in this development.Finally,an application is used to illustrate how the software environment works for the problems of model validation,effectiveness evaluation and performance analysis.
文摘The paper is devoted to the elastostatic calibration of industrial robots, which is used for precise machining of large-dimensional parts made of composite materials. In this technological process, the interaction between the robot and the workpiece causes essential elastic deflections of the manipulator components that should be compensated by the robot controller using relevant elastostatic model of this mechanism. To estimate parameters of this model, an advanced calibration technique is applied that is based on the non-linear experiment design theory, which is adopted for this particular application. In contrast to previous works, it is proposed a concept of the user-defined test-pose, which is used to evaluate the calibration experiments quality. In the frame of this concept, the related optimization problem is defined and numerical routines are developed, which allow generating optimal set of manipulator configurations and corresponding forces/torques for a given number of the calibration experiments. Some specific kinematic constraints are also taken into account, which insure feasibility of calibration experiments for the obtained configurations and allow avoiding collision between the robotic manipulator and the measurement equipment. The efficiency of the developed technique is illustrated by an application example that deals with elastostatic calibration of the serial manipulator used for robot-based machining.
基金High Technology Research and Development Program me of China (No.2 0 0 1AA413 13 0 )
文摘An optimal experiment design (DED) with respect to the use of designing model-base controller was studied. The mean squared error at the setpoint is chosen as the performance criterion. Simple design formulas are derived based on the asymptotic theory. The signal is used for the open loop experiment. The design constraint is the power of the process signal or the process input signal. The results give guideline for identification application.
文摘Owing to rapid advances in the next-generation sequencing technology, the cost of DNA sequencing has been reduced by over several orders of magnitude. However, genomic sequencing of individuals at the population scale is still restricted to a few model species due to the huge challenge of constructing libraries for thousands of samples. Meanwhile, pooled sequencing provides a cost-effective alternative to sequencing individuals separately, which could vastly reduce the time and cost for DNA library preparation. Technological improvements, together with the broad range of biological research questions that require large sample sizes, mean that pooled sequencing will continue to complement the sequencing of individual genomes and become increasingly important in the foreseeable future. However, simply mixing samples together for sequencing makes it impossible to identify reads that belongs to each sample. Barcoding technology could help to solve this problem, nonetheless, currently, barcoding every sample is costly especially for large-scale samples. An alternative to barcoding is combinatorial pooled sequencing which employs pooling pattern rather than short DNA barcodes to encode each sample. In combinatorial pooled sequencing, samples are mixed into few pools according to a carefully designed pooling strategy which allows the sequencing data to be decoded to identify the reads that belongs to the sample that are unique or rare in the population. In this review, we mainly survey the experiment design and decoding procedure for the combinatorial pooled sequencing applied in rare variant and rare haplotype carriers screening, complex genome assembling and single individual haplotyping.
基金Supported by National Science&Technology Pillar Program of China(Grant No.2014BAB08B01)National Natural Science Foundation of China(Grant No.51409123)+1 种基金Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20140554)Training Project for Young Core Teacher of Jiangsu University,China
文摘Cavitation is one of the most important performance of centrifugal pumps. However, the current optimization works of centrifugal pump are mostly focusing on hydraulic efficiency only, which may result in poor cavitation performance. Therefore, it is necessary to find an appropriate solution to improve cavitation performance with acceptable efficiency. In this paper, to improve the cavitation performance of a centrifugal pump with a vaned diffuser, the influence of impeller geometric parameters on the cavitation of the pump is investigated using the orthogonal design of experiment (DOE) based on computational fluid dynamics. The impeller inlet diameter D1, inlet incidence angle Aft, and blade wrap angle ~0 are selected as the main impeller geometric parameters and the orthogonal experiment of L9(3"3) is performed. Three-dimensional steady simulations for cavitation are conducted by using constant gas mass fraction model with second-order upwind, and the predicated cavitation performance is validated by laboratory experiment. The optimization results are obtained by the range analysis method to improve cavitation performance without obvious decreasing the efficiency of the centrifugal pump. The internal flow of the pump is analyzed in order to identify the flow behavior that can affect cavitation performance. The results show that D1 has the greatest influence on the pump cavitation and the final optimized impeller provides better flow distribution at blade leading edge. The final optimized impeller accomplishes better cavitation and hydraulic performance and the NPSHR decreases by 0.63m compared with the original one. The presented work supplies a feasible route in engineering practice to optimize a centrifugal pump impeller for better cavitation performance.
基金This work was supported by Science Foundation of Guangxi Zhuang Autonomous Region (Contract No. 02336060).
文摘Four process parameters, pad diameter, stencil thickness, ball diameter and stand-off were chosen as four control factors. By using an L25 (5^6 ) orthogonal array the ceramic ball grid array ( CBGA ) solder joints which have 25 different combinations of process parameters were designed. The numerical models of all the 25 CBGA solder joints were developed using the Sugrace Evolver. Utilizing the sugrace coordinate exported from the 25 CBGA solder joints numerical models, the finite element analysis models were set up and the nonlinear finite element analysis of the CBGA solder joints under thermal cycles were pegrormed by ANSYS. The thermal fatigue life of CBGA solder joint was calculated using Coffin-Manson equation. Based on the calculated thermal fatigue life results, the range analysis and the variance analysis were pegrormed. The results show that the fatigue life of CBGA solder joint is affected by the pad diameter, the stencil thickness, the ball diameter and the stand-off in a descending order, the best combination of process parameters results in the longest fatigue life is 0.07 mm stand-off, 0.125 mm stencil thickness of, 0.85 mm ball diameter and 0. 89 mm pad diameter. With 95% confidence the pad diameter has a significant effect on the reliability of CBGA solder joints whereas the stand-off, the stencil thickness and the ball diameter have little effect on the reliability of CBGA solder joints.
基金Project(50878111) supported by the National Natural Science Foundation of China
文摘Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.
基金Research supported by the National Natural Science Foundation of China (10301015)the Science and Technology Innovation Fund of Nankai University, the Visiting Scholar Program at Chern Institute of Mathematicsa Hong Kong Research Grants Council Grant (RGC/HKBU 200804)
文摘Supersaturated design is essentially a fractional factorial design in which the number of potential effects is greater than the number of runs. In this article, the supersaturated design is applied to a computer experiment through an example of steady current circuit model problem. A uniform mixed-level supersaturated design and the centered quadratic regression model are used. This example shows that supersaturated design and quadratic regression modeling method are very effective for screening effects and building the predictor. They are not only useful in computer experiments but also in industrial and other scientific experiments.
文摘In sensitivity experiments, the response is binary and each experimental unit has a critical stimulus level that cannot be observed directly. It is often of interest to estimate extreme quantiles of the distribution of these critical stimulus levels over the tested products. For this purpose a new sequential scheme is proposed with some commonly used models. By using the bootstrap repeated-sampling principle, reasonable prior distributions based on a historic data set are specified. Then, a Bayesian strategy for the sequential procedure is provided and the estimator is given. Further, a high order approximation for such an estimator is explored and its consistency is proven. A simulation study shows that the proposed method gives superior performances over the existing methods.
文摘Due to the complex chemical composition of nickel ores, the requests for the decrease of production costs, and the increase of nickel extraction in the existing depletion of high-grade sulfide ores around the world, computer modeling of nickel ore leaching process be- came a need and a challenge. In this paper, the design of experiments (DOE) theory was used to determine the optimal experimental design plan matrix based on the D optimality criterion. In the high-pressure sulfuric acid leaching (HPSAL) process for nickel laterite in "Rudjinci" ore in Serbia, the temperature, the sulfuric acid to ore ratio, the stirring speed, and the leaching time as the predictor variables, and the degree of nickel extraction as the response have been considered. To model the process, the multiple linear regression (MLR) and response surface method (RSM), together with the two-level and four-factor full factorial central composite design (CCD) plan, were used. The proposed re- gression models have not been proven adequate. Therefore, the artificial neural network (ANN) approach with the same experimental plan was used in order to reduce operational costs, give a better modeling accuracy, and provide a more successful process optimization. The model is based on the multi-layer neural networks with the back-propagation (BP) learning algorithm and the bipolar sigmoid activation function.
文摘Electromagnetic stir casting process of A357-Si C nanocomposite was discussed using the D-optimal design of experiment(DODOE) method. As the main objective, nine random experiments obtained by DX-7 software were performed. By this method, A357-Si C nanocomposites with 0.5, 1.0 and 1.5 wt.% Si C were fabricated at three different frequencies(10, 35 and 60 Hz) in the experimental stage. The microstructural evolution was characterized by scanning electron and optical microscopes, and the mechanical properties were investigated using hardness and roomtemperature uniaxial tensile tests. The results showed that the homogeneous distribution of Si C nanoparticles leads to the microstructure evolution from dendritic to non-dendritic form and a reduction of size by 73.9%. Additionally, based on DODOE, F-values of 44.80 and 179.64 were achieved for yield stress(YS) and ultimate tensile strength(UTS), respectively, implying that the model is significant and the variables(Si C fraction and stirring frequency) were appropriately selected. The optimum values of the Si C fraction and stirring frequency were found to be 1.5 wt.% and 60 Hz, respectively. In this case, YS and UTS for A357-Si C nanocomposites were obtained to be 120 and 188 MPa(57.7% and 57.9 % increase compared with those of the as-cast sample), respectively.
文摘Identification of process parameters,their effects and contributions to the outcomes of the system using experimental approach could be a daunting,time consuming,and costly course.Using proper statistical methods,i.e.,Taguchi method,could significantly reduce the number of required experiments and statistical significance of the parameter can be identified.Friction stir welding is one of those welding techniques with many parameters which have different effects on the quality of the welds.In friction stir welding the tool rotational speed(RPM)and transverse speed(mm/min)influence the strength(i.e.,hardness distribution)of the stirred zone.In this study,these two factors are investigated to determine the effect they will have on the hardness in the stirred zone of the friction stir welds and how the two factors are related to one another for as-cast magnesium alloy AM60 with nominal chemical composition of Mg-(5.5-6.5)Al-(0.24-0.6)Mn-0.22Zn-0.1Si.Experimental data was taken at three different tool rotational speeds and three different transverse speeds.The data obtained was then analyzed using a 32 factorial design to find the contribution of these parameters.It was determined that both tool rotational speed and transverse speed possess significant effects on the stir zone hardness.Also,the interactions between the two factors were statistically assessed.
文摘Recently, some results have been acquired with the Monte- Carlo statistical experiments in the design of ocean en gineering. The results show that Monte-Carlo statistical experiments can be widely used in estimating the parameters of wave statistical distributions, checking the probability model of the long- term wave extreme value distribution under a typhoon condition and calculating the failure probability of the ocean platforms.
文摘One promising joining method for NiTi-SMA (shape memory alloy)-components is laser welding. This joining technology bears huge potential regarding process automation and mechanical properties as well as durability, especially within the field of small- and medium-sized actuators. However, there is still need for research due to unsolved issues influencing the microstructure and thus effecting mechanical properties as well as SMA-characteristics of these joints. Therefore, the purpose of this paper is the evaluation of quality parameters of NiTi-NiTi-wire-joints. For this purpose, design of experiments with a fractional factorial design is used for the investigation, because of its high potential to decrease experimental effort. This paper provides a basis for future research in the field of SMA-actuators and joining.