期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Calculated and Experimental Research of Sheet Resistances of Laser-Doped Silicon Solar Cells 被引量:2
1
作者 李涛 王文静 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第2期166-169,共4页
The calculated and experimental research of sheet resistances of crystalline silicon solar cells by dry laser doping is investigated. The nonlinear numerical model on laser melting of crystalline silicon and liquid-ph... The calculated and experimental research of sheet resistances of crystalline silicon solar cells by dry laser doping is investigated. The nonlinear numerical model on laser melting of crystalline silicon and liquid-phase diffusion of phosphorus atoms by dry laser doping is analyzed by the finite difference method implemented in MATLAB. The melting period and melting depth of crystalline silicon as a function of laser energy density is achieved. The effective liquid-phase diffusion of phosphorus atoms in melting silicon by dry laser doping is confirmed by the rapid decrease of sheet resistances in experimental measurement. The plateau of sheet resistances is reached at around 15 Ω/. The calculated sheet resistances as a function of laser energy density is obtained and the calculated results are in good agreement with the corresponding experimental measurement. Due to the successful verification by comparison between experimental measurement and calculated results, the simulation results could be used to optimize the virtual laser doping parameters. 展开更多
关键词 Calculated and experimental Research of Sheet Resistances of Laser-Doped Silicon Solar Cells
下载PDF
Damage-ignition mechanism studies on modified propellant with different crosslinking density under dynamic loading
2
作者 Hong-zheng Duan Yan-qing Wu +2 位作者 Xiao Hou Kun Yang Feng-lei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期155-164,共10页
The study of high-energy and low-vulnerability propellants is important for the power performance and safety of solid propellant rocket motors.The modified split Hopkinson pressure bar(SHPB)tests are performed on two ... The study of high-energy and low-vulnerability propellants is important for the power performance and safety of solid propellant rocket motors.The modified split Hopkinson pressure bar(SHPB)tests are performed on two kinds of propellant with different crosslinking density to study the dynamic mechanical responses and damage-ignition mechanism.SHPB apparatus is equipped with a highperformance infrared camera and high-speed camera to capture the deformation,damage-ignition feature and temperature evolution images in the impact process.The results suggested that the mechanical responses and damage-ignition mechanism of the propellants were affected by the strain rates and crosslinking density.The damage-ignition degree is more intense and the reaction occurs earlier with the increase of strain rates.For propellant 1 with higher crosslinking density,the critical ignition strain rate is 4500 s^(-1).Two kinds of propellants show different ignition mechanism,i.e.crack generation,propagation and final fracture for propellant 1 while viscous shear flow for propellant 2.Meanwhile,the SEM images also reveal the difference of damage-ignition mechanism of the two kinds of propellants.Finally,the ignition mechanism under different strain rates and critical ignition strain rate of propellants are further explained by the theoretical calculation of temperature variations. 展开更多
关键词 The modified propellants Dynamic loading Mechanical property Damage-ignition mechanism experimental and theoretical calculation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部