期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Experimental Study of the Multi-gap Multi-channel Gas Spark Closing Switch 被引量:2
1
作者 孙凤举 曾江涛 +3 位作者 邱爱慈 张嘉生 尹佳辉 邱毓昌 《Plasma Science and Technology》 SCIE EI CAS CSCD 2001年第4期871-876,共6页
A coaxial multi-gap multi-channel spark switch with stainless-steel-spring ring gap electrodes is designed and investigated. The switch is triggered by a pulse applied to the cylindrical electrode outside the discharg... A coaxial multi-gap multi-channel spark switch with stainless-steel-spring ring gap electrodes is designed and investigated. The switch is triggered by a pulse applied to the cylindrical electrode outside the discharging channel through a parasitic capacitance coupling. The jitter of the switch is reduced by several short-distance gas gaps in series, and its inductance is reduced by a multi-channel discharge on account of the inductance isolation between the coils of the spring ring electrode. The experimental results indicate that the switch is of low inductance (15-30 nH), low jitter (-3 ns), and stable breakdown performance 展开更多
关键词 experimental Study of the Multi-gap Multi-channel gas Spark Closing Switch MMCS
下载PDF
Comparative Study of Hydrogen and Carbon Isotopic Composition of Gases Generated from the Pyrolysis of a Peat under Saltwater and Freshwater Conditions 被引量:3
2
作者 WU Yingzhong DUAN Yi +5 位作者 ZHAO Yang CAO Xixi MA Lanhua QIAN Yaorong LI Zhongping XING Lantian 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第5期1879-1887,共9页
To understand the influence of the diagenetic water medium on the isotopic compositions of thermogenic coalbed gas, both hydrous and anhydrous closed-system pyrolyses were performed at temperatures of 250°C to 65... To understand the influence of the diagenetic water medium on the isotopic compositions of thermogenic coalbed gas, both hydrous and anhydrous closed-system pyrolyses were performed at temperatures of 250°C to 650°C on an herbaceous marsh peat. Compared to the results of anhydrous pyrolysis, the hydrocarbon gases generated from hydrous pyrolyses have very different hydrogen isotopic compositions. However, the carbon isotopic compositions of the hydrocarbon gases became only slightly heavier in hydrous pyrolysis, compared to that from anhydrous pyrolysis. With the progress of thermal evolution from peat to a more advanced thermal maturity of vitrinite reflectance values(Ro) of 5.5% during the pyrolysis, the difference in the average δD value increased from 52‰ to 64‰ between the hydrous pyrolysis with saltwater and anhydrous pyrolysis and increased from 18‰ to 29‰ between the hydrous pyrolysis with freshwater and anhydrous pyrolysis, respectively. The difference in the average δ^(13)C value was only 1‰–2‰ between the hydrous and anhydrous pyrolysis. The relationships between the δD values of the generated hydrocarbon gases and Ro values as well as among δD values of the hydrocarbon gas species are established. The close relationships among these parameters suggest that the water medium had a significant effect on the hydrogen isotopic composition and a minimal effect on the carbon isotopic composition of the hydrocarbon gases. The results of these pyrolyses may provide information for the understanding of the genesis of coalbed gas from herbaceous marsh material with the participation of different diagenetic water media. 展开更多
关键词 simulation experiment gas product hydrogen and carbon isotope diagenetic water medium influencing factor Xinjiang
下载PDF
Characteristics and applications of gas desorption with excavation disturbances in coal mining 被引量:31
3
作者 Jiachen Wang 《International Journal of Coal Science & Technology》 EI 2015年第1期30-37,共8页
According to the deficiency of experiment system for gas adsorption and desorption in coal mass, a large scale experiment system is developed independently by researchers. This experiment system is composed of primary... According to the deficiency of experiment system for gas adsorption and desorption in coal mass, a large scale experiment system is developed independently by researchers. This experiment system is composed of primary and auxiliary boxes, power transmission system, mining system, loading system, gas charging system, data monitoring and intelligent acquisition system. The maximum experiment coal consumption is 1200 kg, the mining system is developed to conduct experiment for gas desorption under excavating disturbance, and the plane-charging cribriform ventilation device is developed to realize uniform ventilation for experiment coal sample, which is accord with the actual gas source situation of coal bed. The desorption characteristics of gas in coal are experimentally studied under the conditions of nature and mining using the experiment system. The results show that, compare with nature condition, the permeability of coal and the velocity of gas desorption could significantly increase under the influence of coal pressure relief and destruction caused by mining, and the degree of gas desorption could somewhat increase too. Finally, pressure relief gas extraction of current seam and adjacent seams after mining in a certain coal mine of Yangquan mining area are introduced, and the gas desorption experiment results is verified by analyzing the effect of gas extraction. 展开更多
关键词 gas adsorption and desorption experimental system MINING gas desorption ~ Simultaneous extraction of coal and gas
下载PDF
Methodological factors affecting gas and methane production during in vitro rumen fermentation evaluated by meta-analysis approach
4
作者 Laura Maccarana Mirko Cattani +3 位作者 Franco Tagliapietra Stefano Schiavon Lucia Bailoni Roberto Mantovani 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2017年第1期236-247,共12页
Effects of some methodological factors on in vitro measures of gas production(GP, mL/g DM), CH4production(mL/g DM) and proportion(% CH4 on total GP) were investigated by meta-analysis. These factors were conside... Effects of some methodological factors on in vitro measures of gas production(GP, mL/g DM), CH4production(mL/g DM) and proportion(% CH4 on total GP) were investigated by meta-analysis. These factors were considered:pressure in the GP equipment(0 = constant; 1 = increasing), incubation time(0 = 24; 1 = ≥ 48 h), time of rumen fluid collection(0 = before feeding; 1 = after feeding of donor animals), donor species of rumen fluid(0 = sheep; 1 =bovine), presence of N in the buffer solution(0 = presence; 1 = absence), and ratio between amount of buffered rumen fluid and feed sample(BRF/FS; 0 = ≤ 130 mL/g DM; 1 = 130–140 mL/g DM; 2 = ≥ 140 mL/g DM). The NDF content of feed sample incubated(NDF) was considered as a continuous variable. From an initial database of 105 papers, 58 were discarded because one of the above-mentioned factors was not stated. After discarding 17 papers,the final dataset comprised 30 papers(339 observations). A preliminary mixed model analysis was carried out on experimental data considering the study as random factor. Variables adjusted for study effect were analyzed using a backward stepwise analysis including the above-mentioned variables. The analysis showed that the extension of incubation time and reduction of NDF increased GP and CH4 values. Values of GP and CH4 also increased when rumen fluid was collected after feeding compared to before feeding(+26.4 and +9.0 mL/g DM, for GP and CH4),from bovine compared to sheep(+32.8 and +5.2 mL/g DM, for GP and CH4), and when the buffer solution did not contain N(+24.7 and +6.7 mL/g DM for GP and CH4). The increase of BRF/FS ratio enhanced GP and CH4production(+7.7 and +3.3 mL/g DM per each class of increase, respectively). In vitro techniques for measuring GP and CH4 production are mostly used as screening methods, thus a full standardization of such techniques is not feasible. However, a greater harmonization of analytical procedures(i.e., a reduction in the number of available protocols) would be useful to facilitate comparison between results of different experiments. 展开更多
关键词 experimental factors gas production In vitro rumen fermentation Meta-analysis Methane production
下载PDF
A new two-dimensional experimental apparatus for electrochemical remediation processes
5
作者 顾莹莹 付融冰 +1 位作者 李鸿江 安慧 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第8期1389-1397,共9页
Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electro... Electrochemical extraction of contaminants from soils is a promising soil decontamination technology. Various experiments have been conducted to study electrochemical reactions and geochemical processes in the electrochemical extraction using different experimental apparatuses. This paper presents the development of a new closed two-dimensional(2D) apparatus that can better simulate the field application of the technology and accurately monitor the most important electrochemical parameters to understand the process. The innovative features of the new apparatus include the outer and inner electrodes designed to apply a non-uniform electrical field across the specimen as in the field electrochemical remediation process, the probes installed to measure the 2D distribution of electrical voltage, and the gas and fluid volume measurement devices used to accurately monitor the gas generation and electroosmotic flow rates at both electrodes as a function of time. The components of this new apparatus and the features of each component are described. The operating procedure and some typical results from three experiments with the apparatus are demonstrated. The results show that the variation of the gas generation rate is in good agreement with the electric current. Their relation provides a valid evaluation for electrochemical behavior of the system and Faraday's laws of electrolysis. The 2D profiles of cadmium concentration and voltage distribution at the end of the experiment reveal the great effects of a non-uniform electrical field on the contaminant mobilization. 展开更多
关键词 Electrochemical extraction 2D experimental apparatus Non-uniform electrical field gas generation rate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部