Under the background of“new engineering”construction,software engineering teaching pays more attention to cultivating students’engineering practice and innovation ability.In view of the inconsistency between develo...Under the background of“new engineering”construction,software engineering teaching pays more attention to cultivating students’engineering practice and innovation ability.In view of the inconsistency between development and demand design,team division of labor,difficult measurement of individual contribution,single assessment method,and other problems in traditional practice teaching,this paper proposes that under the guidance of agile development methods,software engineering courses should adopt Scrum framework to organize course project practice,use agile collaboration platform to implement individual work,follow up experiment progress,and ensure effective project advancement.The statistical data of curriculum“diversity”assessment show that there is an obvious improvement effect on students’software engineering ability and quality.展开更多
As one part of the National Highway Network Planning in China, the Qinghai-Tibet Expressway (QTE) from Golmud to Lhasa will be built in the interior of the Qinghai-Tibet Plateau (QTP) across about 630 km of permaf...As one part of the National Highway Network Planning in China, the Qinghai-Tibet Expressway (QTE) from Golmud to Lhasa will be built in the interior of the Qinghai-Tibet Plateau (QTP) across about 630 km of permafrost lands. Due to the problematic interactions between the engineering foundations and permafrost, the frozen-soil roadbed of the QTE will be subjected to the more intense thermal disturbances due to the wider black surface. The design and construction for long-term thermal and mechanical stability will face more severe challenges than those in ordinary highways and railways in the same region. In order to provide scientific support for cold regions engineering practices, the QTE Experimental Demonstration Project (EDP) was constructed in situ in the vicinity of the Beilu'he Permafrost Station in the interior of the QTP. In this paper, the anticipated problems of the proposed QTE project are enumerated, and the structures of the test sections for QTE EDP are described. Through numerical simulations, it was found that the heat transfer processes occurring in each specific road structure are significantly different. The heat accumulation in the highway embankment is mainly due to the black bituminous pavement, but in the railway embankment with its gravel surfaces, it mainly comes from the side slopes. As a result, the net heat accumulation of the highway embankment is three times higher than that in the railway. In expressway, the heat accumulation is further increased because of the wider pavement so that significantly more heat will be accumulated in the roadbed beneath the centerline area. Thus, the thermal stability of the fro- zen-soil roadbed and the underlying permafrost of the QTE can be seriously threatened without proper engineering measures protection against thawing. Based on research and practical experiences from the operating Qinghai-Tibet Railway (QTR) and the Qinghai-Tibet Highway (QTH), combined with the predicted characteristics of heat transfer in an expressway embankment, nine kinds of engineering measures for mitigating the thaw settlement of foundation soils through the cooling the roadbed soils were built and are being tested in the EDP. The design of the monitoring system for the EDP and the observed parameters were also described.展开更多
The spatial resolution of general circulation models (GCMs) is too coarse to represent regional climate variations at the regional, basin, and local scales required for many environmental modeling and impact assessm...The spatial resolution of general circulation models (GCMs) is too coarse to represent regional climate variations at the regional, basin, and local scales required for many environmental modeling and impact assessments. Weather research and forecasting model (WRF) is a nextgeneration, fully compressible, Euler non-hydrostatic mesoscale forecast model with a runtime hydrostatic option. This model is useful for downscaling weather and climate at the scales from one kilometer to thousands of kilometers, and is useful for deriving meteorological parameters required for hydrological simulation too. The objective of this paper is to validate WRF simulating 5 km/ 1 h air temperatures by daily observed data of China Meteorological Administration (CMA) stations, and by hourly in-situ data of the Watershed Allied Telemetry Experimental Research Project. The daily validation shows that the WRF simulation has good agreement with the observed data; the R2 between the WRF simulation and each station is more than 0.93; the absolute of meanbias error (MBE) for each station is less than 2℃; and the MBEs of Ejina, Mazongshan and Alxa stations are near zero, with R2 is more than 0.98, which can be taken as an unbiased estimation. The hourly validation shows that the WRF simulation can capture the basic trend of observed data, the MBE of each site is approximately 2℃, the R2 of each site is more than 0.80, with the highest at 0.95, and the computed and observed surface air temperature series show a significantly similar trend.展开更多
文摘Under the background of“new engineering”construction,software engineering teaching pays more attention to cultivating students’engineering practice and innovation ability.In view of the inconsistency between development and demand design,team division of labor,difficult measurement of individual contribution,single assessment method,and other problems in traditional practice teaching,this paper proposes that under the guidance of agile development methods,software engineering courses should adopt Scrum framework to organize course project practice,use agile collaboration platform to implement individual work,follow up experiment progress,and ensure effective project advancement.The statistical data of curriculum“diversity”assessment show that there is an obvious improvement effect on students’software engineering ability and quality.
基金The QTE EDP was funded by the Western Project Program of the Chinese Academy of Sciences (Grant No. KZCX2-XB2-10)Major Program of the National Natural Science Foundation of China (Grant No.40730736)National Science Foundation for Distinguished Young Scholars of China (Grant No. 40625004)
文摘As one part of the National Highway Network Planning in China, the Qinghai-Tibet Expressway (QTE) from Golmud to Lhasa will be built in the interior of the Qinghai-Tibet Plateau (QTP) across about 630 km of permafrost lands. Due to the problematic interactions between the engineering foundations and permafrost, the frozen-soil roadbed of the QTE will be subjected to the more intense thermal disturbances due to the wider black surface. The design and construction for long-term thermal and mechanical stability will face more severe challenges than those in ordinary highways and railways in the same region. In order to provide scientific support for cold regions engineering practices, the QTE Experimental Demonstration Project (EDP) was constructed in situ in the vicinity of the Beilu'he Permafrost Station in the interior of the QTP. In this paper, the anticipated problems of the proposed QTE project are enumerated, and the structures of the test sections for QTE EDP are described. Through numerical simulations, it was found that the heat transfer processes occurring in each specific road structure are significantly different. The heat accumulation in the highway embankment is mainly due to the black bituminous pavement, but in the railway embankment with its gravel surfaces, it mainly comes from the side slopes. As a result, the net heat accumulation of the highway embankment is three times higher than that in the railway. In expressway, the heat accumulation is further increased because of the wider pavement so that significantly more heat will be accumulated in the roadbed beneath the centerline area. Thus, the thermal stability of the fro- zen-soil roadbed and the underlying permafrost of the QTE can be seriously threatened without proper engineering measures protection against thawing. Based on research and practical experiences from the operating Qinghai-Tibet Railway (QTR) and the Qinghai-Tibet Highway (QTH), combined with the predicted characteristics of heat transfer in an expressway embankment, nine kinds of engineering measures for mitigating the thaw settlement of foundation soils through the cooling the roadbed soils were built and are being tested in the EDP. The design of the monitoring system for the EDP and the observed parameters were also described.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant Nos. 40901202, 40925004), and the National High Technology Research and Development Program of China (Grant No. 2009AA122104). The input data for WRF model are from the Research Data Archive (RDA) which is maintained by the Computational and Information Systems Laboratory (CISL) at the National Center for Atmo- spheric Research (NCAR). The original data are available from the RDA (http://dss.ucar.edu) in Dataset No. ds083.2.
文摘The spatial resolution of general circulation models (GCMs) is too coarse to represent regional climate variations at the regional, basin, and local scales required for many environmental modeling and impact assessments. Weather research and forecasting model (WRF) is a nextgeneration, fully compressible, Euler non-hydrostatic mesoscale forecast model with a runtime hydrostatic option. This model is useful for downscaling weather and climate at the scales from one kilometer to thousands of kilometers, and is useful for deriving meteorological parameters required for hydrological simulation too. The objective of this paper is to validate WRF simulating 5 km/ 1 h air temperatures by daily observed data of China Meteorological Administration (CMA) stations, and by hourly in-situ data of the Watershed Allied Telemetry Experimental Research Project. The daily validation shows that the WRF simulation has good agreement with the observed data; the R2 between the WRF simulation and each station is more than 0.93; the absolute of meanbias error (MBE) for each station is less than 2℃; and the MBEs of Ejina, Mazongshan and Alxa stations are near zero, with R2 is more than 0.98, which can be taken as an unbiased estimation. The hourly validation shows that the WRF simulation can capture the basic trend of observed data, the MBE of each site is approximately 2℃, the R2 of each site is more than 0.80, with the highest at 0.95, and the computed and observed surface air temperature series show a significantly similar trend.