The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage var...The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water.展开更多
In this paper we present a series of monthly gravity field solutions from Gravity Recovery and Climate Experiment(GRACE) range measurements using modified short arc approach,in which the ambiguity of range measureme...In this paper we present a series of monthly gravity field solutions from Gravity Recovery and Climate Experiment(GRACE) range measurements using modified short arc approach,in which the ambiguity of range measurements is eliminated via differentiating two adjacent range measurements.The data used for developing our monthly gravity field model are same as Tongji-GRACEOl model except that the range measurements are used to replace the range rate measurements,and our model is truncated to degree and order 60,spanning Jan.2004 to Dec.2010 also same as Tongji-GRACE01 model.Based on the comparison results of the C_(2,0),C_(2,1),S_(2,1),and C_(15,15),S_(15,15),time series and the global mass change signals as well as the mass change time series in Amazon area of our model with those of Tongji-GRACE01 model,we can conclude that our monthly gravity field model is comparable with Tongji-GRACE01 monthly model.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)Projects(11173050 and 11373059)
文摘The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water.
基金sponsored by National Natural Science Foundation of China(41474017)National Key Basic Research Program of China(973 Program+3 种基金2012CB957703)sponsored by National Natural Science Foundation of China(41274035)State Key Laboratory of Geodesy and Earth's Dynamics(SKLGED2013-3-2-Z,SKLGED2014-1-3-E)State Key Laboratory of Geo-Information Engineering(SKLGIE2014-M-1-2)
文摘In this paper we present a series of monthly gravity field solutions from Gravity Recovery and Climate Experiment(GRACE) range measurements using modified short arc approach,in which the ambiguity of range measurements is eliminated via differentiating two adjacent range measurements.The data used for developing our monthly gravity field model are same as Tongji-GRACEOl model except that the range measurements are used to replace the range rate measurements,and our model is truncated to degree and order 60,spanning Jan.2004 to Dec.2010 also same as Tongji-GRACE01 model.Based on the comparison results of the C_(2,0),C_(2,1),S_(2,1),and C_(15,15),S_(15,15),time series and the global mass change signals as well as the mass change time series in Amazon area of our model with those of Tongji-GRACE01 model,we can conclude that our monthly gravity field model is comparable with Tongji-GRACE01 monthly model.