The design scheme of an agricultural expert system based on longan and cauliflower planting techniques is presented. Using an object-oriented design and a combination of the techniques in multimedia, database, expert ...The design scheme of an agricultural expert system based on longan and cauliflower planting techniques is presented. Using an object-oriented design and a combination of the techniques in multimedia, database, expert system and artificial intelligence, an in-depth analysis and summary are made of the knowledge features of die agricultural multimedia expert system and data models involved. According to the practical problems in agricultural field, the architectures and functions of the system are designed, and some design ideas about the hybrid knowledge representation and fuzzy reasoning are proposed.展开更多
With the growing discovery of exposed vulnerabilities in the Industrial Control Components(ICCs),identification of the exploitable ones is urgent for Industrial Control System(ICS)administrators to proactively forecas...With the growing discovery of exposed vulnerabilities in the Industrial Control Components(ICCs),identification of the exploitable ones is urgent for Industrial Control System(ICS)administrators to proactively forecast potential threats.However,it is not a trivial task due to the complexity of the multi-source heterogeneous data and the lack of automatic analysis methods.To address these challenges,we propose an exploitability reasoning method based on the ICC-Vulnerability Knowledge Graph(KG)in which relation paths contain abundant potential evidence to support the reasoning.The reasoning task in this work refers to determining whether a specific relation is valid between an attacker entity and a possible exploitable vulnerability entity with the help of a collective of the critical paths.The proposed method consists of three primary building blocks:KG construction,relation path representation,and query relation reasoning.A security-oriented ontology combines exploit modeling,which provides a guideline for the integration of the scattered knowledge while constructing the KG.We emphasize the role of the aggregation of the attention mechanism in representation learning and ultimate reasoning.In order to acquire a high-quality representation,the entity and relation embeddings take advantage of their local structure and related semantics.Some critical paths are assigned corresponding attentive weights and then they are aggregated for the determination of the query relation validity.In particular,similarity calculation is introduced into a critical path selection algorithm,which improves search and reasoning performance.Meanwhile,the proposed algorithm avoids redundant paths between the given pairs of entities.Experimental results show that the proposed method outperforms the state-of-the-art ones in the aspects of embedding quality and query relation reasoning accuracy.展开更多
基金Supported by the National Natural Science Foundation of China (No. 700400D1).
文摘The design scheme of an agricultural expert system based on longan and cauliflower planting techniques is presented. Using an object-oriented design and a combination of the techniques in multimedia, database, expert system and artificial intelligence, an in-depth analysis and summary are made of the knowledge features of die agricultural multimedia expert system and data models involved. According to the practical problems in agricultural field, the architectures and functions of the system are designed, and some design ideas about the hybrid knowledge representation and fuzzy reasoning are proposed.
基金Our work is supported by the National Key R&D Program of China(2021YFB2012400).
文摘With the growing discovery of exposed vulnerabilities in the Industrial Control Components(ICCs),identification of the exploitable ones is urgent for Industrial Control System(ICS)administrators to proactively forecast potential threats.However,it is not a trivial task due to the complexity of the multi-source heterogeneous data and the lack of automatic analysis methods.To address these challenges,we propose an exploitability reasoning method based on the ICC-Vulnerability Knowledge Graph(KG)in which relation paths contain abundant potential evidence to support the reasoning.The reasoning task in this work refers to determining whether a specific relation is valid between an attacker entity and a possible exploitable vulnerability entity with the help of a collective of the critical paths.The proposed method consists of three primary building blocks:KG construction,relation path representation,and query relation reasoning.A security-oriented ontology combines exploit modeling,which provides a guideline for the integration of the scattered knowledge while constructing the KG.We emphasize the role of the aggregation of the attention mechanism in representation learning and ultimate reasoning.In order to acquire a high-quality representation,the entity and relation embeddings take advantage of their local structure and related semantics.Some critical paths are assigned corresponding attentive weights and then they are aggregated for the determination of the query relation validity.In particular,similarity calculation is introduced into a critical path selection algorithm,which improves search and reasoning performance.Meanwhile,the proposed algorithm avoids redundant paths between the given pairs of entities.Experimental results show that the proposed method outperforms the state-of-the-art ones in the aspects of embedding quality and query relation reasoning accuracy.