期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
基于无人机图像和SHAP特征筛选的小麦田间产量预测方法研究
1
作者 朱志畅 葛焱 +4 位作者 臧晶荣 李庆 金时超 徐焕良 翟肇裕 《麦类作物学报》 北大核心 2025年第2期264-274,共11页
为了探寻适宜的小麦产量预测模型并提高其精度,从冬小麦灌浆期的无人机多光谱和RGB图像中提取了14种光谱参数和28种形态参数作为特征变量,利用线性回归、随机森林、神经网络等10种机器学习方法构建小麦田间产量预测模型,并比较了模型间... 为了探寻适宜的小麦产量预测模型并提高其精度,从冬小麦灌浆期的无人机多光谱和RGB图像中提取了14种光谱参数和28种形态参数作为特征变量,利用线性回归、随机森林、神经网络等10种机器学习方法构建小麦田间产量预测模型,并比较了模型间预测能力的差异;同时,引入机器学习事后可解释性方法SHAP对输入的特征变量进行重要性分析和筛选,了解其提高模型预测能力的效果。结果表明:(1)10种机器学习模型中,误差逆传播神经网络BPNN的产量预测表现最好(r^(2)=0.826,RMSE=0.094 t·hm^(-2));(2)根据SHAP确定的特征变量重要性排序,花青素反射指数ARI和三维冠层体积Volume对于预测结果的影响最大,占全部特征重要性总和的45.48%;(3)经过SHAP特征筛选后,确定了在BPNN产量预测模型上表现最优的9个特征变量,其预测结果r^(2)为0.865,RMSE为0.075 t·hm^(-2),比使用全特征的BPNN和事前Pearson相关性分析方法在预测精度上均有提升。因此,在优选产量预测模型基础上,可采用SHAP机制对特征变量的重要性进行筛选和分析,以此进一步提高田间小麦产量预测精度。 展开更多
关键词 小麦 无人机图像 机器学习 shap加性解释方法 产量预测
下载PDF
Investigation of feature contribution to shield tunneling-induced settlement using Shapley additive explanations method 被引量:9
2
作者 K.K.Pabodha M.Kannangara Wanhuan Zhou +1 位作者 Zhi Ding Zhehao Hong 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1052-1063,共12页
Accurate prediction of shield tunneling-induced settlement is a complex problem that requires consideration of many influential parameters.Recent studies reveal that machine learning(ML)algorithms can predict the sett... Accurate prediction of shield tunneling-induced settlement is a complex problem that requires consideration of many influential parameters.Recent studies reveal that machine learning(ML)algorithms can predict the settlement caused by tunneling.However,well-performing ML models are usually less interpretable.Irrelevant input features decrease the performance and interpretability of an ML model.Nonetheless,feature selection,a critical step in the ML pipeline,is usually ignored in most studies that focused on predicting tunneling-induced settlement.This study applies four techniques,i.e.Pearson correlation method,sequential forward selection(SFS),sequential backward selection(SBS)and Boruta algorithm,to investigate the effect of feature selection on the model’s performance when predicting the tunneling-induced maximum surface settlement(S_(max)).The data set used in this study was compiled from two metro tunnel projects excavated in Hangzhou,China using earth pressure balance(EPB)shields and consists of 14 input features and a single output(i.e.S_(max)).The ML model that is trained on features selected from the Boruta algorithm demonstrates the best performance in both the training and testing phases.The relevant features chosen from the Boruta algorithm further indicate that tunneling-induced settlement is affected by parameters related to tunnel geometry,geological conditions and shield operation.The recently proposed Shapley additive explanations(SHAP)method explores how the input features contribute to the output of a complex ML model.It is observed that the larger settlements are induced during shield tunneling in silty clay.Moreover,the SHAP analysis reveals that the low magnitudes of face pressure at the top of the shield increase the model’s output。 展开更多
关键词 feature Selection Shield operational parameters Pearson correlation method Boruta algorithm shapley additive explanations(shap) analysis
下载PDF
基于LightGBM和SHAP方法的居民投资风险偏好的实证分析
3
作者 祝起祾 苟小菊 《金融科技时代》 2024年第4期79-84,共6页
作为金融产品市场的重要客户群体,居民投资者的风险偏好在很大程度上决定了其对不同风险收益特征的金融产品的需求。文章利用LightGBM模型和SHAP方法对2017-2019年中国金融调查数据进行实证分析,基于高维特征充分挖掘居民风险偏好的影... 作为金融产品市场的重要客户群体,居民投资者的风险偏好在很大程度上决定了其对不同风险收益特征的金融产品的需求。文章利用LightGBM模型和SHAP方法对2017-2019年中国金融调查数据进行实证分析,基于高维特征充分挖掘居民风险偏好的影响因素及其影响机制。结果显示,年龄、金融素养、家庭收入和收入的跨期变动影响显著,其中年龄和金融素养的影响最为重要,年龄和居民投资风险偏好存在负向关系,而金融素养的提升会抬升风险偏好水平,收入对风险偏好的影响则较为复杂,存在非线性特征。 展开更多
关键词 机器学习 数据挖掘 LightGBM模型 风险偏好 shap方法
下载PDF
基于ANN和XGB算法的锈蚀钢筋混凝土高温粘结强度预测方法 被引量:1
4
作者 刘廷滨 黄滔 +3 位作者 欧嘉祥 李云霞 艾岩 任正熹 《工程力学》 EI CSCD 北大核心 2024年第S01期300-309,共10页
为准确评估锈蚀钢筋混凝土(CRC)结构在突发火灾下的结构承载力,锈蚀钢筋混凝土高温粘结强度的统一预测方法研究亟待开展。然而,粘结退化机理复杂,粘结因素众多,实验方法不能考虑所有粘结因素的相关复杂关系的影响。在现有大量试验数据... 为准确评估锈蚀钢筋混凝土(CRC)结构在突发火灾下的结构承载力,锈蚀钢筋混凝土高温粘结强度的统一预测方法研究亟待开展。然而,粘结退化机理复杂,粘结因素众多,实验方法不能考虑所有粘结因素的相关复杂关系的影响。在现有大量试验数据的基础上,采用机器学习方法可以有效地通过数据建立输入和输出特征之间的回归关系。该文利用ANN和XGB两种机器学习算法建立了一个统一的锈蚀钢筋混凝土高温粘结强度预测模型。基于612组高温锈蚀钢筋混凝土的试验研究数据,进行模型训练和测试。结果表明:ML模型的预测结果与实验结果十分吻合。此外,针对机器学习算法本身存在的黑盒子问题,使用SHAP方法来解决锈蚀钢筋混凝土高温粘结强度预测过程中的模型可解释性问题。同时,还将ML模型的计算结果与三种理论计算公式的结果进行了比较,结果表明:ML模型具有明显的优势。新构建的混合机器学习模型很有可能成为准确评估CRC结构经受高温后的损伤程度问题的新选择。 展开更多
关键词 人工神经网络(ANN) 极端梯度提升树(XGB) 锈蚀钢筋混凝土 高温粘结强度 shap方法
下载PDF
Shapley值及其应用 被引量:1
5
作者 吴孟达 毛紫阳 王丹 《数学建模及其应用》 2024年第1期110-119,共10页
Shapley值是合作博弈理论中最重要的概念之一,其在经济学、社会管理等领域具有十分广泛的应用.本文回顾了合作博弈的Shapley值的理论研究,并从Shapley-Shubik权力指数、拼车费用分摊、图博弈的Page-Shapley值以及SHAP方法与机器学习等4... Shapley值是合作博弈理论中最重要的概念之一,其在经济学、社会管理等领域具有十分广泛的应用.本文回顾了合作博弈的Shapley值的理论研究,并从Shapley-Shubik权力指数、拼车费用分摊、图博弈的Page-Shapley值以及SHAP方法与机器学习等4个方面介绍了Shapley值的应用进展. 展开更多
关键词 合作博弈 shapLEY值 权力指数 图博弈 shap方法
下载PDF
融合随机森林和SHAP方法的灌区用水调度经验分析--以淠史杭灌区瓦西干渠灌域为例 被引量:2
6
作者 苏楠 章少辉 +1 位作者 白美健 张宝忠 《灌溉排水学报》 CAS CSCD 北大核心 2022年第11期122-128,共7页
【目的】定量表征灌区积累丰富的用水调度经验,使其能够被其他管理人员复制和应用。【方法】本文基于淠史杭灌区瓦西干渠灌域的3个典型年实测数据样本,在充分考虑温度、降雨和土壤墒情等特征变量的空间变异基础上,通过融合随机森林模型... 【目的】定量表征灌区积累丰富的用水调度经验,使其能够被其他管理人员复制和应用。【方法】本文基于淠史杭灌区瓦西干渠灌域的3个典型年实测数据样本,在充分考虑温度、降雨和土壤墒情等特征变量的空间变异基础上,通过融合随机森林模型和SHAP方法,构建有限数据样本下灌区用水调度目标流量与各特征变量之间的非线性定量表征。【结果】应用该方法可得到长时间序列以及不同典型年情境下各特征变量的重要性得分及变化情况,在找到适用于实际用水调度特征变量组合的同时,可分析得到不同调度情景下主要参考的特征变量指标;结合SHAP值正负情况分析,还可得到用水调度目标流量对各特征变量响应的正负方向。【结论】本文所用方法实现了灌区用水调度历史经验的定量知识化表征,为理性预测未来不同用水调度流量提供科学依据。 展开更多
关键词 淠史杭灌区 用水调度 随机森林模型 shap方法 特征变量 非线性表征
下载PDF
公司债券信用利差微观影响因素研究——基于机器学习方法的分析
7
作者 江海潮 刘一达 《吉林工商学院学报》 2024年第1期85-92,共8页
基于2008—2022年我国A股上市公司发行的公司债券二级市场月度面板数据,使用多种机器学习方法研究债券个性因素与公司个性因素对公司债券信用利差的影响与贡献。研究结果表明,信用评级、月交易天数比例、公司产权性质、公司规模为公司... 基于2008—2022年我国A股上市公司发行的公司债券二级市场月度面板数据,使用多种机器学习方法研究债券个性因素与公司个性因素对公司债券信用利差的影响与贡献。研究结果表明,信用评级、月交易天数比例、公司产权性质、公司规模为公司债券信用利差的重要影响因素,企业资产负债率、债券剩余期限、控股股东股权质押比例、资产回报率、公司所属行业、第一大股东持股比例、公司股价波动和债券换手率为公司债券信用利差的次要影响因素;公司债券信用利差预测值与信用评级、公司规模、公司产权性质显著负相关,与债券月交易天数比例显著正相关;月交易天数比例、公司产权性质、公司规模对不同信用评级组别的影响存在异质性。债券月交易天数比例和公司产权性质对AA级及以下的低信用评级公司债券信用利差影响更大,发债公司规模对不同信用评级公司债券信用利差影响的差异性较小。 展开更多
关键词 公司债券 信用利差 shap解释性方法 机器学习
下载PDF
基于多源数据和Stacking-SHAP方法的山地丘陵区土地覆被分类 被引量:1
8
作者 周亚男 陈绘 刘洪斌 《农业工程学报》 EI CAS CSCD 北大核心 2022年第23期213-222,共10页
山地丘陵区地形复杂,地表辐射信号畸变严重,地物识别困难。为准确提取山区地物信息,结合多源异构数据,Stacking集成学习和shapley addictive explanation(SHAP)方法展开土地覆被分类研究。从Sentinel-1/2影像、气候数据、土壤数据和数... 山地丘陵区地形复杂,地表辐射信号畸变严重,地物识别困难。为准确提取山区地物信息,结合多源异构数据,Stacking集成学习和shapley addictive explanation(SHAP)方法展开土地覆被分类研究。从Sentinel-1/2影像、气候数据、土壤数据和数字高程图中提取遥感、气候、土壤和地形四类特征变量,设计多种变量组合方案,结合Stacking算法,探讨不同类型变量在山区地物识别中的效用,并对比Stacking最佳方案与支持向量机(Support Vector Machine,SVM)、随机森林(Random Forest,RF)和极端梯度回归(eXtreme Gradient Boosting,XGBoost)算法的分类精度,评价Stacking方法在山区地物信息提取中的性能。同时,引入SHAP方法,量化Stacking模型中各特征变量的重要性。结果表明:在仅以遥感变量为基础方案时,山区土地覆被分类精度最低;在分别加入气候、土壤和地形变量后,总体精度、Kappa系数和F1分数均有所提高,其中旱地、水田和园地分类精度的提升幅度较大。基于Stacking算法结合所有类型特征变量的方案达到了最佳的分类精度,其总体精度、Kappa系数和F1分数分别为96.61%、0.96和94.81%,分类精度优于相同特征下的SVM、RF和XGBoost。SHAP方法可量化Stacking模型中特征变量的全局以及局部重要性,明确各变量对不同地物类型识别的相对贡献,为山区土地覆被分类的变量选择及优化提供有价值的信息。该研究可为机器学习协助复杂景观地区土地覆被制图研究提供技术支持和理论参考。 展开更多
关键词 遥感 多源数据 土地覆被分类 Stacking算法 shap方法 山地丘陵区
下载PDF
通货膨胀影响因素识别——基于机器学习方法的再检验 被引量:10
9
作者 肖争艳 陈衎 +1 位作者 陈小亮 陈彦斌 《统计研究》 CSSCI 北大核心 2022年第6期132-147,共16页
准确识别通货膨胀的影响因素,可以前瞻性地防范通胀风险及其危害,具有重要政策意义。已有研究主要使用SVAR等传统计量方法分析通胀的影响因素,但传统计量方法能够涵盖的因素种类和非线性关系有限。考虑到机器学习方法能够有效突破传统... 准确识别通货膨胀的影响因素,可以前瞻性地防范通胀风险及其危害,具有重要政策意义。已有研究主要使用SVAR等传统计量方法分析通胀的影响因素,但传统计量方法能够涵盖的因素种类和非线性关系有限。考虑到机器学习方法能够有效突破传统方法的局限,本文综合使用SHAP值解释性方法和SVR等多种非线性机器学习方法,重新识别了2001—2019年间我国所发生的5轮通胀的影响因素。研究结果表明,第一,通胀预期和食品价格上涨是过去20多年间多轮通胀的共同驱动因素;第二,消费和投资等需求拉动因素对通胀的影响逐渐减弱,成本推动因素尤其是劳动力成本对通胀的影响不断增强;第三,货币政策能够通过多种渠道影响通胀走势,并且一直是通胀的重要影响因素。有鉴于此,建议通过加强引导通胀预期、稳定食品生产和供应、营造良好经营环境以缓解劳动成本上涨压力等举措防范通胀风险。此外,不能因为担心通胀压力就过于束缚货币政策的力度,应该在做好金融市场和房地产市场宏观审慎监管的前提下,适当加大货币政策对实体经济的支持力度,以更好地应对我国经济下行压力。 展开更多
关键词 通货膨胀 机器学习 shap值解释性方法 通胀预期
下载PDF
基于可解释机器学习方法的RC深受弯构件开裂剪力预测 被引量:1
10
作者 马财龙 王文虎 +2 位作者 侯宪龙 谢晨曦 鲁成凤 《新疆大学学报(自然科学版)(中英文)》 CAS 2023年第5期621-629,共9页
钢筋混凝土(Reinforced Concrete,RC)深受弯构件易发生脆性剪切破坏,斜裂缝产生及发展伴随全过程,开裂剪力是关键指标之一.建立了276根含开裂荷载信息的RC深受弯构件受剪试验数据库,采用机器学习XGBoost集成算法预测其开裂剪力,并采用5... 钢筋混凝土(Reinforced Concrete,RC)深受弯构件易发生脆性剪切破坏,斜裂缝产生及发展伴随全过程,开裂剪力是关键指标之一.建立了276根含开裂荷载信息的RC深受弯构件受剪试验数据库,采用机器学习XGBoost集成算法预测其开裂剪力,并采用5项统计指标评估机器学习模型的预测性能.从无腹筋和双向腹筋两类工况,对比了所建机器学习模型与5个半经验半理论计算公式的预测结果,表明所建预测模型的预测精度较高且离散性小,其R2为91%,预测值与试验值比值的均值为0.99,标准差为0.27.此外,采用SHAP(SHapley Additive exPlanations)可解释性方法对机器学习模型预测结果进行全局解释和局部解释,特征重要性排序由重要到一般依次为:加载板宽度、截面高度、混凝土抗压强度,表明所建模型及可解释性方法是符合机理的. 展开更多
关键词 钢筋混凝土 深受弯构件 开裂剪力 机器学习方法 shap
下载PDF
基于可解释机器学习的水平井产能预测方法 被引量:16
11
作者 马先林 周德胜 +2 位作者 蔡文斌 李宪文 何明舫 《西南石油大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第4期81-90,共10页
准确预测致密气藏分段压裂水平井产能是压裂效果评价和优化设计的关键环节。现有的产能预测方法,引入了过多的假设和简化,很难全面反映致密储层流体多尺度的运移机理和复杂物理过程,导致产能预测误差较大。提出一种基于机器学习的致密... 准确预测致密气藏分段压裂水平井产能是压裂效果评价和优化设计的关键环节。现有的产能预测方法,引入了过多的假设和简化,很难全面反映致密储层流体多尺度的运移机理和复杂物理过程,导致产能预测误差较大。提出一种基于机器学习的致密气藏分段压裂水平井产能预测方法,该方法综合利用已收集的地质、压裂水平井产能及钻完井等多类型数据,通过机器学习算法直接挖掘数据内部规律,建立产能预测模型。此外,为解决常规机器学习模型的“黑盒子”问题,还利用SHAP(SHapley Additive exPlanations)方法对建立的机器学习模型进行全局和局部解释,分析影响产能的主要因素,增加了模型的可信性和透明度。以苏里格气田苏东示范区为例,验证了该方法的有效性和实用性。与油气藏数值方法相比,该方法不仅提高了产能预测的精度,而且缩短了建模周期,加快了计算速度。 展开更多
关键词 分段压裂水平井 机器学习 产能预测 可解释性 数据驱动 shap方法
下载PDF
基于XGBoost-SHAP的钢管混凝土柱轴向承载力预测模型 被引量:4
12
作者 陈曦泽 贾俊峰 +2 位作者 白玉磊 郭彤 杜修力 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2023年第6期1061-1070,共10页
为了可靠、准确地预测钢管混凝土(CFST)柱的轴向承载力,建立和解释集成机器学习的CFST柱轴向承载力预测模型.使用马氏距离评估CFST柱数据库质量,通过极限梯度提升(XGBoost)算法建立CFST柱轴向承载力预测模型,使用K折交叉验证(K-Fold CV... 为了可靠、准确地预测钢管混凝土(CFST)柱的轴向承载力,建立和解释集成机器学习的CFST柱轴向承载力预测模型.使用马氏距离评估CFST柱数据库质量,通过极限梯度提升(XGBoost)算法建立CFST柱轴向承载力预测模型,使用K折交叉验证(K-Fold CV)和树结构概率密度估计(TPE)算法寻找模型的最优超参数组合.采用不同评价指标将优化后XGBoost模型的预测值与已有方法和未优化XGBoost模型的计算值比较.使用SHAP方法给出XGBoost模型预测结果的整体和局部的解释.结果表明,经过超参数调整优化的XGBoost模型的性能超越了相关规范和经验公式的性能,且SHAP方法能够有效地解释XGBoost模型的输出. 展开更多
关键词 钢管混凝土(CFST)柱 轴向承载力 极限梯度提升(XGBoost) 超参数优化 shap 可解释性
下载PDF
基于并行异构图和序列注意力机制的中文实体关系抽取模型
13
作者 毛典辉 李学博 +2 位作者 刘峻岭 张登辉 颜文婧 《计算机应用》 CSCD 北大核心 2024年第7期2018-2025,共8页
近年来,随着深度学习技术的快速发展,实体关系抽取在许多领域取得了显著的进展。然而,由于汉语具有复杂的句法结构和语义关系,面向中文的实体关系抽取任务中仍然存在着多项挑战。其中,中文文本中的重叠三元组问题是领域中的重要难题之... 近年来,随着深度学习技术的快速发展,实体关系抽取在许多领域取得了显著的进展。然而,由于汉语具有复杂的句法结构和语义关系,面向中文的实体关系抽取任务中仍然存在着多项挑战。其中,中文文本中的重叠三元组问题是领域中的重要难题之一。针对中文文本中的重叠三元组问题,提出了一种混合神经网络实体关系联合抽取(HNNERJE)模型。HNNERJE模型以并行方式融合序列注意力机制和异构图注意力机制,并结合门控融合策略构建了深度集成框架。该模型不仅可以同时捕获中文文本的语序信息和实体关联信息,还能够自适应地调整主客体标记器的输出,从而有效解决重叠三元组问题。另外,通过引入对抗训练算法提高模型对未见样本和噪声的适应能力。运用SHAP(SHapley Additive exPlanations)方法对HNNERJE模型进行解释分析,基于模型的识别结果解析它在抽取实体和关系时所依据的关键特征。HNNERJE模型在NYT、WebNLG、CMeIE和DuIE数据集上的F1值分别达到了92.17%、93.42%、47.40%和67.98%。实验结果表明:HNNERJE模型可以将非结构化的文本数据转化为结构化的知识表示,有效提取其中蕴含的有价值信息。 展开更多
关键词 实体关系抽取 异构图 注意力机制 对抗训练 shap方法
下载PDF
山区公路交叉口驾驶避险决策行为特性分析
14
作者 秦雅琴 包丽馨 +2 位作者 陈亮 勾钰 王锦锐 《安全与环境学报》 CAS CSCD 北大核心 2024年第6期2295-2304,共10页
为研究驾驶特征指标与驾驶避险行为决策的关联规则以提升驾驶安全,将驾驶避险决策行为划分为纵向“停车避险”和横向“转向避险”,并运用驾驶模拟系统构建12种山区公路交叉口交通冲突虚拟场景,招募38名驾驶人进行试验,采集车辆特征和驾... 为研究驾驶特征指标与驾驶避险行为决策的关联规则以提升驾驶安全,将驾驶避险决策行为划分为纵向“停车避险”和横向“转向避险”,并运用驾驶模拟系统构建12种山区公路交叉口交通冲突虚拟场景,招募38名驾驶人进行试验,采集车辆特征和驾驶人扫视、眨眼、注视等眼动特征数据。基于随机森林构建驾驶避险决策行为模型,然后引入沙普利加和解释(SHapley Additive exPlanation, SHAP)框架进一步分析车辆、眼动特征与驾驶避险行为之间的非线性关系。结果表明:模型对纵、横向避险行为预测的准确率分别为84.77%、94.70%;纵向速度标准差、扫视持续时间标准差、轨迹偏差标准差、侧向速度标准差与驾驶避险决策行为存在明显关联,如纵向速度标准差过大(约大于10 km/h),纵向“停车避险”可能性明显增加。 展开更多
关键词 安全工程 驾驶避险 决策行为 驾驶模拟 分类预测 沙普利加和解释(shap)
下载PDF
基于CatBoost-MOEAD的大直径泥水盾构姿态多目标预测与优化
15
作者 吴贤国 刘俊 +1 位作者 王静怡 覃亚伟 《中国安全科学学报》 CAS CSCD 北大核心 2024年第10期50-57,共8页
为避免盾构掘进过程中出现蛇形、轴线偏离等姿态异常问题影响施工安全,提出一种结合类别提升(CatBoost)算法和基于分解的多目标优化算法(MOEAD)的大直径泥水盾构姿态控制方法;构建一个盾构姿态预测模型,该模型包含19个输入参数和6个输... 为避免盾构掘进过程中出现蛇形、轴线偏离等姿态异常问题影响施工安全,提出一种结合类别提升(CatBoost)算法和基于分解的多目标优化算法(MOEAD)的大直径泥水盾构姿态控制方法;构建一个盾构姿态预测模型,该模型包含19个输入参数和6个输出参数,利用CatBoost算法构建输入参数与输出参数之间的非线性映射关系;采用沙普利加性解释法(SHAP)分析输入参数对盾构姿态的影响;结合多目标优化算法构建CatBoost-MOEAD盾构姿态多目标优化模型,将所提模型运用到武汉长江大直径泥水盾构隧道工程中,分析验证所提方法的适用性和有效性。结果表明:CatBoost预测模型能够高效地预测大直径泥水盾构的姿态,其中6个盾构姿态目标的决定系数范围为0.931~0.974,均方根误差范围为0.030~0.880,误差范围为0.039~1.057;对盾构姿态影响较大的施工参数中推进组推力对盾构姿态的影响最为显著;通过研发的CatBoost-MOEAD盾构姿态多目标优化方法,盾构姿态的优化效果显著,优化率可达38.86%。 展开更多
关键词 类别提升(CatBoost) 基于分解的多目标优化算法(MOEAD) 大直径泥水盾构 盾构姿态 多目标优化 沙普利加性解释法(shap)
下载PDF
页岩油水平井产量影响因素分析及压裂参数优化决策
16
作者 刘巍 曹小朋 +2 位作者 胡慧芳 程紫燕 卜亚辉 《油气藏评价与开发》 CSCD 北大核心 2024年第5期764-770,778,共8页
济阳坳陷页岩在沙三下亚段和沙四上亚段等主要产层获得重大突破,但开发时间短,存在单井产量差异较大,产量主控因素尚不明确的问题,深入分析页岩油水平井高产主控因素、优化确定合理压裂工艺参数仍是目前研究的重点。为明确各因素对水平... 济阳坳陷页岩在沙三下亚段和沙四上亚段等主要产层获得重大突破,但开发时间短,存在单井产量差异较大,产量主控因素尚不明确的问题,深入分析页岩油水平井高产主控因素、优化确定合理压裂工艺参数仍是目前研究的重点。为明确各因素对水平井产量的影响,基于矿场实际数据开展因素关联性分析和规律挖掘。利用灰色关联分析方法及主成分分析方法定量计算页岩油水平井生产90 d、180 d和270 d的平均日产油量与压裂液用量、加砂量等影响因素之间的相关性,并在此基础上建立页岩油产能预测模型,结合SHAP算法对压裂参数进行优化分析。结果表明:压裂液用量、加砂量和破裂事件数是影响产量的主要工程参数,灰质含量、总有机碳含量和页岩孔隙性是影响产量的主要地质参数;随着生产时间的延长,地质因素对产量的影响逐渐增强,工程因素对产量的影响逐渐减弱;压裂参数优化分析确定了40~45 m压裂段长,2700 m3单段压裂液用量,180 m3单段加砂量为最佳压裂施工参数,为页岩油水平井的开发决策和压裂设计提供了新的技术思路。 展开更多
关键词 水平井产量 影响因素分析 灰色关联分析 shap算法 页岩油
下载PDF
奥运奖牌可以被预测吗?——基于可解释机器学习视角
17
作者 石慧敏 章东迎 章永辉 《上海体育大学学报》 CSSCI 北大核心 2024年第4期26-36,共11页
基于1992-2021年夏季奥运会的分项目成绩大数据,使用随机森林模型评估不同项目金牌和奖牌的可预测性,发现各项目存在较大的差异:对奖牌而言,可预测性最强的是乒乓球、羽毛球和游泳,而最弱的是水球、现代五项和排球。基于可解释机器学习... 基于1992-2021年夏季奥运会的分项目成绩大数据,使用随机森林模型评估不同项目金牌和奖牌的可预测性,发现各项目存在较大的差异:对奖牌而言,可预测性最强的是乒乓球、羽毛球和游泳,而最弱的是水球、现代五项和排球。基于可解释机器学习方法挖掘社会经济因素对奥运奖牌的影响发现:(1)对同一个项目而言,女子项目的可预测准确性普遍高于男子项目;(2)代表队所在地区的人口规模、人均GDP、是否为主办国等因素对奖牌总数具有一定影响;(3)在特定项目上,代表队的传统优势(如中国的乒乓球、美国的田径等)对奖牌预测具有较大影响。 展开更多
关键词 奥运奖牌 机器学习 特征重要性 shap方法 shapLEY值
下载PDF
小微企业违约特征再探索:基于SHAP解释方法的机器学习模型 被引量:1
18
作者 雷欣南 林乐凡 +1 位作者 肖斌卿 俞红海 《中国管理科学》 CSSCI CSCD 北大核心 2024年第5期1-12,共12页
机器学习方法已经被应用于小微企业贷款审批和监测过程,并且在违约识别方面取得了良好效果,但是机器学习系统决策过程的不可见性导致其在违约特征识别领域未能得到进一步实际应用。基于某银行的小微企业贷款微观数据,在机器学习模型基... 机器学习方法已经被应用于小微企业贷款审批和监测过程,并且在违约识别方面取得了良好效果,但是机器学习系统决策过程的不可见性导致其在违约特征识别领域未能得到进一步实际应用。基于某银行的小微企业贷款微观数据,在机器学习模型基础上加入SHAP(SHapley Additive exPlanations)解释方法对小微企业的违约特征进行研究比较,研究兼顾了实际情境中判别准确性和指标可解释的要求。研究发现,除传统的贷款信息与企业财务指标外,违约的核心特征中企业年龄、被告案件数量以及客户经理评价“软信息”等非财务指标对于识别小微企业违约具有重要价值。本文从可解释性的角度探讨机器学习方法在小微企业违约特征识别的应用,创新性地引入SHAP解释方法研究评级中的重要指标,同时所挖掘的关键指标对贷款业务开展具有指导意义。 展开更多
关键词 小微企业 违约特征 非财务信息 shap解释方法 机器学习
原文传递
基于校准窗口集成与耦合市场特征的可解释双层日前电价预测 被引量:1
19
作者 刘慧鑫 沈晓东 +3 位作者 魏泽涛 刘友波 刘俊勇 白元宝 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1272-1285,I0003,共15页
随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在... 随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在工程应用中可信度偏低。针对上述问题,该文提出一种考虑校准窗口集成与耦合市场特征的可解释双层日前电价预测框架。内层框架为基于改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMDAN)的择优预测,首先分解原始电价序列,然后应用Lasso估计回归(lassoestimated autoregressive,LEAR)、长期和短期时间序列网络(long-term and short-term time-series networks,LSTNet)、卷积神经网络-长短记忆神经网络(convolutionalneuralnetworks-longshort termmemory,CNN-LSTM)、移动平均(autoregressive integrated moving average,ARIMA)和核极限学习机(kernel extreme learning machines,KELM)模型预测子序列并选择最优预测算法。外层框架为基于贝叶斯模型平均(bayes modelaveraging,BMA)的校准窗口集成预测,针对每个不同校准窗口长度数据集下的预测分配权重并集成得到预测电价。最后,通过可解释方法沙普利加性解释模型(shapley additiveexplanations,SHAP)分析耦合市场特征如何影响预测电价。该文通过北欧电力市场数据集的算例分析证明了所提算法的优越性和校准窗口集成方案的有效性。 展开更多
关键词 校准窗口集成 耦合市场特征 双层预测框架 改进自适应噪声完备集合经验模态分解(ICEEMDAN) 贝叶斯模型平均(BMA) 沙普利加性解释模型(shap)
下载PDF
多源数据驱动的轧机振动预测及可解释性分析 被引量:1
20
作者 张阳 段振杰 +3 位作者 王思静 林然锰 杜晓钟 王威中 《噪声与振动控制》 CSCD 北大核心 2024年第3期16-21,55,共7页
为研究轧制过程动态工艺参数对轧机振动的影响规律,改善现有研究中机理模型精度较低且数据模型缺乏可解释性的问题,采用极端梯度提升(Extreme Gradient Boosting,XGBoost)算法建立基于多源数据的轧机振动预测模型,并使用SHapley Additiv... 为研究轧制过程动态工艺参数对轧机振动的影响规律,改善现有研究中机理模型精度较低且数据模型缺乏可解释性的问题,采用极端梯度提升(Extreme Gradient Boosting,XGBoost)算法建立基于多源数据的轧机振动预测模型,并使用SHapley Additive exPlanations(SHAP)框架对预测模型进行解释。通过与其他预测模型相比,XGBoost预测模型可以利用工艺参数实现对轧机运行状态的高精度预测。基于SHAP框架解释的结果表明,出入口厚度、轧制力、轧制速度对轧机振动影响较大,后张力对轧机振动影响较小。研究为提高轧机设备与工艺参数的匹配度,实现将工业数据应用于轧机振动预测和分析提供理论基础。 展开更多
关键词 振动与波 轧机振动 工业数据 工艺参数 极端梯度提升 shap解释方法
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部