In this paper, deep grove ball bearing GB6206 has been chosen as research object, and the explicit dynamics analysis method in ANSYS/LS-DYNA has been used to study features of fault bearing which with a tiny pit in th...In this paper, deep grove ball bearing GB6206 has been chosen as research object, and the explicit dynamics analysis method in ANSYS/LS-DYNA has been used to study features of fault bearing which with a tiny pit in the inner ring raceway. In the process of building this bearing FEM, the following parameters have been well considered, such as boundary conditions, friction, contaction, loads and so on. Through simulation, the corresponding equivalent stress nephograms and acceleration of nodes on the inner ring raceway has been obtained. According to features of acceleration which occurs neighbor to fault pit, bearing's fault diagnosis has been realized. This paper provides a new way in monitoring bearing status and diagnosing fault of bearing.展开更多
In order to cope with the most expensive stem fault simulation in fault simu-lation field, several accelerated techniques are presented in this paper. These techniques include static analysis on circuit structure in p...In order to cope with the most expensive stem fault simulation in fault simu-lation field, several accelerated techniques are presented in this paper. These techniques include static analysis on circuit structure in preprocessing stage and dynamic calculations in fault simulation stage. With these techniques,the area for stem fault simulation and number of the stems requiring explicit fault simulation are greatly reduced, so that the entire fault simulation time is substantially decreased. Experimental results given in this paper show that the fault simulation algorithm using these techniques is of very high efficiency for both small and large numbers of test patterns. Especially with the increase of circuit gates, its effectivenbss improves obyiously.展开更多
文摘In this paper, deep grove ball bearing GB6206 has been chosen as research object, and the explicit dynamics analysis method in ANSYS/LS-DYNA has been used to study features of fault bearing which with a tiny pit in the inner ring raceway. In the process of building this bearing FEM, the following parameters have been well considered, such as boundary conditions, friction, contaction, loads and so on. Through simulation, the corresponding equivalent stress nephograms and acceleration of nodes on the inner ring raceway has been obtained. According to features of acceleration which occurs neighbor to fault pit, bearing's fault diagnosis has been realized. This paper provides a new way in monitoring bearing status and diagnosing fault of bearing.
文摘In order to cope with the most expensive stem fault simulation in fault simu-lation field, several accelerated techniques are presented in this paper. These techniques include static analysis on circuit structure in preprocessing stage and dynamic calculations in fault simulation stage. With these techniques,the area for stem fault simulation and number of the stems requiring explicit fault simulation are greatly reduced, so that the entire fault simulation time is substantially decreased. Experimental results given in this paper show that the fault simulation algorithm using these techniques is of very high efficiency for both small and large numbers of test patterns. Especially with the increase of circuit gates, its effectivenbss improves obyiously.