期刊文献+
共找到169篇文章
< 1 2 9 >
每页显示 20 50 100
Symplectic Schemes for Birkhoffian System 被引量:8
1
作者 SUHong-Ling QINMeng-Zhao 《Communications in Theoretical Physics》 SCIE CAS CSCD 2004年第3期329-334,共6页
A universal symplectic structure for a Newtonian system including nonconservative cases can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics. In this paper the symplectic geometry... A universal symplectic structure for a Newtonian system including nonconservative cases can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics. In this paper the symplectic geometry structure of Birkhoffian system is discussed, then the symplecticity of Birkhoffian phase flow is presented. Based on these properties we give a way to construct symplectic schemes for Birkhoffian systems by using the generating function method. 展开更多
关键词 Birkhoffran system symplectic structure generating function method symplectic scheme
下载PDF
Multisymplectic Euler Box Scheme for the KdV Equation 被引量:11
2
作者 王雨顺 王斌 陈新 《Chinese Physics Letters》 SCIE CAS CSCD 2007年第2期312-314,共3页
We investigate the multisymplectic Euler box scheme for the Korteweg-de Vries (KdV) equation. A new completely explicit six-point scheme is derived. Numerical experiments of the new scheme with comparisons to the Za... We investigate the multisymplectic Euler box scheme for the Korteweg-de Vries (KdV) equation. A new completely explicit six-point scheme is derived. Numerical experiments of the new scheme with comparisons to the Zabusky-Kruskal scheme, the multisymplectic 12-point scheme, the narrow box scheme and the spectral method are made to show nice numerical stability and ability to preserve the integral invariant for long-time integration. 展开更多
关键词 MULTI-symplectic scheme PREISSMAN scheme GEOMETRY INTEGRATORS PDES
下载PDF
Birkhoffian Symplectic Scheme for a Quantum System 被引量:2
3
作者 苏红玲 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第3期476-480,共5页
In this paper, a classical system of ordinary differential equations is built to describe a kind of n-dimensional quantum systems. The absorption spectrum and the density of the states for the system are defined from ... In this paper, a classical system of ordinary differential equations is built to describe a kind of n-dimensional quantum systems. The absorption spectrum and the density of the states for the system are defined from the points of quantum view and classical view. From the Birkhoffian form of the equations, a Birkhoffian symplectic scheme is derived for solving n-dimensional equations by using the generating function method. Besides the Birkhoffian structure- preserving, the new scheme is proven to preserve the discrete local energy conservation law of the system with zero vector f . Some numerical experiments for a 3-dimensional example show that the new scheme can simulate the general Birkhoffian system better than the implicit midpoint scheme, which is well known to be symplectic scheme for Hamiltonian system. 展开更多
关键词 quantum system Birkhoffian symplectic scheme local energy conservation law perturbed Hamiltonian system
下载PDF
A New Multi-Symplectic Scheme for the KdV Equation 被引量:1
4
作者 LV Zhong-Quan XUE Mei WANG Yu-Shun 《Chinese Physics Letters》 SCIE CAS CSCD 2011年第6期17-20,共4页
We propose a new multi-symplectic integrating scheme for the Korteweg-de Vries(KdV)equation.The new scheme is derived by concatenating spatial discretization of the multi-symplectic Fourier pseudospectral method with ... We propose a new multi-symplectic integrating scheme for the Korteweg-de Vries(KdV)equation.The new scheme is derived by concatenating spatial discretization of the multi-symplectic Fourier pseudospectral method with temporal discretization of the symplectic Euler scheme.The new scheme is explicit in the sense that it does not need to solve nonlinear algebraic equations.It is verified that the multi-symplectic semi-discretization of the KdV equation under periodic boundary conditions has N semi−discrete multi-symplectic conservation laws.We also prove that the full-discrete scheme has N full-discrete multi-symplectic conservation laws.Numerical experiments of the new scheme on the KdV equation are made to demonstrate the stability and other merits for long-time integration. 展开更多
关键词 EQUATION symplectic scheme
下载PDF
Numerical experiment of anharmonic oscillators by using the symplectic scheme-shooting method 被引量:2
5
作者 LIU Xue-shen, DING Pei-zhu (Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, P.R.China) 《原子与分子物理学报》 CAS CSCD 北大核心 2002年第2期119-125,共7页
Symplectic scheme-shooting method (SSSM) is applied to solve the energy eigenvalues of anharmonic oscillators characterized by the potentials V(x)=λx 4 and V(x)=(1/2)x 2+λx 2α with α=2,3,4 and doubly anharmonic os... Symplectic scheme-shooting method (SSSM) is applied to solve the energy eigenvalues of anharmonic oscillators characterized by the potentials V(x)=λx 4 and V(x)=(1/2)x 2+λx 2α with α=2,3,4 and doubly anharmonic oscillators characterized by the potentials V(x)=(1/2)x 2+λ 1x 4 +λ 2x 6, and a high order symplectic scheme tailored to the "time"-dependent Hamiltonian function is presented. The numerical results illustrate that the energy eigenvalues of anharmonic oscillators with the symplectic scheme-shooting method are in good agreement with the numerical accurate ones obtained from the non-perturbative method by using an appropriately scaled basis for the expansion of each eigenfunction; and the energy eigenvalues of doubly anharmonic oscillators with the sympolectic scheme-shooting method are in good agreement with the exact ones and are better than the results obtained from the four-term asymptotic series. Therefore, the symplectic scheme-shooting method, which is very simple and is easy to grasp, is a good numerical algorithm. 展开更多
关键词 SSSM 量子力学 哈密顿量 数值实验 非线性振荡 能量特征
下载PDF
SYMPLECTIC SCHEMES OF VORTEX SYSTEM IN HALF PLAIN
6
作者 王雨顺 王薇 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2000年第2期141-151,共11页
Two kinds of symplectic schemes are proposed for the equations of vortex system in half plane.One is the Reflecting-method which is based on the symplectic schemes for the system in the whole plane.The other is constr... Two kinds of symplectic schemes are proposed for the equations of vortex system in half plane.One is the Reflecting-method which is based on the symplectic schemes for the system in the whole plane.The other is constructed directly according to the feature of the system.Aseries of numerical results are presented to show the effectiveness of our schemes. 展开更多
关键词 symplectic schemeS VORTEX system HALF PLANE Reflectig-method.
下载PDF
Perfect plane-wave source for a high-order symplectic finite-difference time-domain scheme
7
作者 王辉 黄志祥 +1 位作者 吴先良 任信钢 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第11期365-370,共6页
The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order sy... The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order symplectic finite- difference time-domain (SFDTD) scheme for the first time. By splitting the fields on one-dimensional grid and using the nature of numerical plane-wave in finite-difference time-domain (FDTD), the identical dispersion relation can be obtained and proved between the one-dimensional and three-dimensional grids. An efficient plane-wave source is simulated on one-dimensional grid and a perfect match can be achieved for a plane-wave propagating at any angle forming an integer grid cell ratio. Numerical simulations show that the method is valid for SFDTD and the residual field in SF region is shrinked down to -300 dB. 展开更多
关键词 splitting plane-wave finite-difference time-domain high-order symplectic finite-differencetime-domain scheme plane-wave source
下载PDF
Multi-symplectic scheme for the coupled Schrdinger-Boussinesq equations
8
作者 黄浪扬 焦艳东 梁德民 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期45-49,共5页
In this paper, a multi-symplectic Hamiltonian formulation is presented for the coupled Schrdinger-Boussinesq equations (CSBE). Then, a multi-symplectic scheme of the CSBE is derived. The discrete conservation laws o... In this paper, a multi-symplectic Hamiltonian formulation is presented for the coupled Schrdinger-Boussinesq equations (CSBE). Then, a multi-symplectic scheme of the CSBE is derived. The discrete conservation laws of the Langmuir plasmon number and total perturbed number density are also proved. Numerical experiments show that the multi-symplectic scheme simulates the solitary waves for a long time, and preserves the conservation laws well. 展开更多
关键词 coupled Schro¨dinger–Boussinesq equations multi-symplectic scheme conservation laws numerical experiments
下载PDF
Symplectic-like Difference Schemes for Generalized Hamiltonian Systems
9
作者 赵颖 王斌 季仲贞 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第4期719-726,共8页
The nature of infinite-dimensional Hamiltonian systems are studied for the purpose of further study on some generalized Hamiltonian systems equipped with a given Poisson bracket. From both theoretical and practical vi... The nature of infinite-dimensional Hamiltonian systems are studied for the purpose of further study on some generalized Hamiltonian systems equipped with a given Poisson bracket. From both theoretical and practical viewpoints, we summarize a general method of constructing symplectic-like difference schemes of these kinds of systems. This study provides a new algorithm for the application of the symplectic geometry method in numerical solutions of general evolution equations. 展开更多
关键词 infinite-dimensional Hamiltonian systems generalized Hamiltonian systems symplectic-like difference schemes Poisson brackets
下载PDF
Multi-symplectic Geometry and Preissmann Scheme for GSDBM Equation
10
作者 WANG Jun-jie LI Sheng-ping 《Chinese Quarterly Journal of Mathematics》 2017年第2期172-180,共9页
The multi-symplectic geometry for the GSDBM equation is presented in this paper. The multi-symplectic formulations for the GSDBM equation are presented and the local conservation laws are shown to correspond to certai... The multi-symplectic geometry for the GSDBM equation is presented in this paper. The multi-symplectic formulations for the GSDBM equation are presented and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of each formulation is exemplified by the multisymplectic Preissmann scheme. The numerical experiments are given, and the results verify the efficiency of the Preissmann scheme. 展开更多
关键词 Dodd-Bullough-Mikhailov equation multi-symplectic theory Hamilton space Preissmann scheme local conservation laws
下载PDF
A symplectic finite element method based on Galerkin discretization for solving linear systems
11
作者 Zhiping QIU Zhao WANG Bo ZHU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第8期1305-1316,共12页
We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is ... We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is the dissipative algorithm and cannot maintain long-term energy conservation.Thus,a symplectic finite element method with energy conservation is constructed in this paper.A linear elastic system can be discretized into multiple elements,and a Hamiltonian system of each element can be constructed.The single element is discretized by the Galerkin method,and then the Hamiltonian system is constructed into the Birkhoffian system.Finally,all the elements are combined to obtain the vibration equation of the continuous system and solved by the symplectic difference scheme.Through the numerical experiments of the vibration response of the Bernoulli-Euler beam and composite plate,it is found that the vibration response solution and energy obtained with the algorithm are superior to those of the Runge-Kutta algorithm.The results show that the symplectic finite element method can keep energy conservation for a long time and has higher stability in solving the dynamic responses of linear elastic systems. 展开更多
关键词 Galerkin finite element method linear system structural dynamic response symplectic difference scheme
下载PDF
一种Birkhoff形式下结构动响应问题的保辛中点格式
12
作者 邱志平 邱宇 《计算力学学报》 CAS CSCD 北大核心 2024年第1期124-128,共5页
结构动响应预测是结构设计的基础,是结构振动控制、载荷识别的前提。本文在辛体系下针对结构动响应问题,提出了一种Birkhoff形式下的保辛中点格式。首先引入状态变量,并基于摄动方法将结构动响应方程转化为线性自治Birkhoff方程的形式,... 结构动响应预测是结构设计的基础,是结构振动控制、载荷识别的前提。本文在辛体系下针对结构动响应问题,提出了一种Birkhoff形式下的保辛中点格式。首先引入状态变量,并基于摄动方法将结构动响应方程转化为线性自治Birkhoff方程的形式,进一步利用中心差分推导出线性自治Birkhoff方程的中点格式,其证明是保辛的。该格式不要求Birkhoff方程系数矩阵非奇异,因此适用于奇数维系统。两个不同数值算例的结果充分验证了本文方法的卓越性,也凸显了相对于传统算法在计算精确度和稳定性方面的明显优势。 展开更多
关键词 结构动响应问题 BIRKHOFF方程 中点格式 保辛算法 摄动法
下载PDF
A Family of High_order Accuracy Explicit Difference Schemes for Solving 2-D Parabolic Partial Differential Equation 被引量:4
13
作者 任宗修 陈贞忠 王肖凤 《Chinese Quarterly Journal of Mathematics》 CSCD 2002年第3期57-61,共5页
A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx... A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx 4). 展开更多
关键词 D parabolic P.D.E high_order accuracy explic it difference scheme
下载PDF
空间分数阶KGS方程组的辛差分格式
14
作者 王俊杰 《数学物理学报(A辑)》 CSCD 北大核心 2024年第5期1319-1334,共16页
该文研究分数阶KGS方程组的辛差分格式.首先,作者给出了无穷维分数阶Hamilton系统,并将KGS方程组转化为Hamilton系统.然后,基于分数阶中心差分格式对分数阶KGS方程组进行空间离散,得到的半离散系统是一个有限维Hamilton系统.接着,利用... 该文研究分数阶KGS方程组的辛差分格式.首先,作者给出了无穷维分数阶Hamilton系统,并将KGS方程组转化为Hamilton系统.然后,基于分数阶中心差分格式对分数阶KGS方程组进行空间离散,得到的半离散系统是一个有限维Hamilton系统.接着,利用辛中点格式对时间进行离散得到全离散格式,并且对该格式进行了守恒性分析.最后,通过数值实验验证了该数值格式的有效性. 展开更多
关键词 分数阶KGS方程组 守恒格式 辛格式 收敛性
下载PDF
Total Energy Conservation and the Symplectic Algorithm 被引量:1
15
作者 季仲贞 王 斌 +1 位作者 赵 颖 杨宏伟 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第3期459-467,共9页
Based on the principle of total energy conservation, we give two important algorithms, the total energy conservation algorithm and the symplectic algorithm, which are established for the spherical shallow water equati... Based on the principle of total energy conservation, we give two important algorithms, the total energy conservation algorithm and the symplectic algorithm, which are established for the spherical shallow water equations. Also, the relation between the two algorithms is analyzed and numerical tests show the efficiency of the algorithms. 展开更多
关键词 Atmospheric and oceanic equations Conservative system symplectic scheme Total energy conservation Hamiltonian system
下载PDF
Structure-preserving properties of Strmer-Verlet scheme for mathematical pendulum 被引量:1
16
作者 Weipeng HU Mingzhe SONG Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第9期1225-1232,共8页
The structure-preserving property, in both the time domain and the frequency domain, is an important index for evaluating validity of a numerical method. Even in the known structure-preserving methods such as the symp... The structure-preserving property, in both the time domain and the frequency domain, is an important index for evaluating validity of a numerical method. Even in the known structure-preserving methods such as the symplectic method, the inherent conser- vation law in the frequency domain is hardly conserved. By considering a mathematical pendulum model, a Stormer-Verlet scheme is first constructed in a Hamiltonian frame- work. The conservation law of the StSrmer-Verlet scheme is derived, including the total energy expressed in the time domain and periodicity in the frequency domain. To track the structure-preserving properties of the Stormer-Verlet scheme associated with the con- servation law, the motion of the mathematical pendulum is simulated with different time step lengths. The numerical results illustrate that the StSrmer-Verlet scheme can preserve the total energy of the model but cannot preserve periodicity at all. A phase correction is performed for the StSrmer-Verlet scheme. The results imply that the phase correction can improve the conservative property of periodicity of the Stormer-Verlet scheme. 展开更多
关键词 Strmer-Verlet scheme symplectic mathematical pendulum structure-preserving Hamiltonian system phase correction
下载PDF
On the Construction of n-Electron States with Symplectic Symmetry
17
作者 Sun Jiazhong(Sun Chiachung), Li Baifu, Zeng Zonghao and Liu Chengbu (Institute of Theoretical Chemistry, Jilin University, Changchun) 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 1989年第4期344-356,共13页
Under quasispin scheme, a complete group theoretical classification of fermion states with symplectlc symmetry is proposed. Furthermore, the first and second order irreducible tensor operators are investigated in deta... Under quasispin scheme, a complete group theoretical classification of fermion states with symplectlc symmetry is proposed. Furthermore, the first and second order irreducible tensor operators are investigated in detail to approach the fermion states with explicit forms. 展开更多
关键词 Quasispin scheme symplectic symmetry Irreducible tensor operator
下载PDF
耗散型耦合随机非线性薛定谔方程的随机共形多辛方法
18
作者 苗利军 黄驿为 《辽宁师范大学学报(自然科学版)》 CAS 2023年第4期446-450,共5页
随机偏微分方程作为描述受随机环境影响的复杂系统的数学模型,在力学、化学、生物学及经济金融学等领域中都有广泛的应用.耗散型耦合随机非线性薛定谔方程是一类特殊的随机偏微分方程,具有随机共形多辛几何结构,在非线性光学和耗散量子... 随机偏微分方程作为描述受随机环境影响的复杂系统的数学模型,在力学、化学、生物学及经济金融学等领域中都有广泛的应用.耗散型耦合随机非线性薛定谔方程是一类特殊的随机偏微分方程,具有随机共形多辛几何结构,在非线性光学和耗散量子场论中具有重要作用.基于数值格式应尽可能多地保持原随机系统的本质特性,构造了耗散型耦合随机非线性薛定谔方程的随机共形Euler box格式,证明了所提出的随机共形多辛方法能够保持该方程离散的随机共形多辛守恒律. 展开更多
关键词 耗散型耦合随机非线性薛定谔方程 随机共形多辛方法 Euler box格式
下载PDF
二维阻尼非线性sine-Gordon方程的共形多辛Fourier拟谱格式
19
作者 王杰 蒋朝龙 《纯粹数学与应用数学》 2023年第2期214-232,共19页
为二维阻尼非线性sine-Gordon方程构造了一个新的共形多辛Fourier拟谱格式.基于原系统的共形多辛哈密尔顿形式,首先在时间和空间方向上分别用辛中点和Fourier拟谱方法进行离散,得到一个全离散格式.随后证明了构造的格式保持离散的共形... 为二维阻尼非线性sine-Gordon方程构造了一个新的共形多辛Fourier拟谱格式.基于原系统的共形多辛哈密尔顿形式,首先在时间和空间方向上分别用辛中点和Fourier拟谱方法进行离散,得到一个全离散格式.随后证明了构造的格式保持离散的共形多辛守恒律.最后数值实验验证了格式的有效性. 展开更多
关键词 阻尼sine-Gordon方程 共形多辛格式 FOURIER拟谱方法 孤立子
下载PDF
时间相关外场中量子系统时间演化的辛格式 被引量:6
20
作者 石爱民 吴承埙 +1 位作者 周忠源 丁培柱 《计算物理》 CSCD 北大核心 1998年第2期27-32,共6页
对显含时间的可分线性哈密顿系统构造了2阶模方守恒-辛格式和显式辛格式,并计算了1维有限宽无限深势阱中的电子与模拟激光场的相互作用,结果与理论分析一致。为数值研究时间相关外场中的量子系统,特别是强激光与原子相互作用提供... 对显含时间的可分线性哈密顿系统构造了2阶模方守恒-辛格式和显式辛格式,并计算了1维有限宽无限深势阱中的电子与模拟激光场的相互作用,结果与理论分析一致。为数值研究时间相关外场中的量子系统,特别是强激光与原子相互作用提供了合理和有效的方法。 展开更多
关键词 显含时间哈密顿系统 模方守恒-辛格式 显式辛格式
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部