A universal symplectic structure for a Newtonian system including nonconservative cases can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics. In this paper the symplectic geometry...A universal symplectic structure for a Newtonian system including nonconservative cases can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics. In this paper the symplectic geometry structure of Birkhoffian system is discussed, then the symplecticity of Birkhoffian phase flow is presented. Based on these properties we give a way to construct symplectic schemes for Birkhoffian systems by using the generating function method.展开更多
We investigate the multisymplectic Euler box scheme for the Korteweg-de Vries (KdV) equation. A new completely explicit six-point scheme is derived. Numerical experiments of the new scheme with comparisons to the Za...We investigate the multisymplectic Euler box scheme for the Korteweg-de Vries (KdV) equation. A new completely explicit six-point scheme is derived. Numerical experiments of the new scheme with comparisons to the Zabusky-Kruskal scheme, the multisymplectic 12-point scheme, the narrow box scheme and the spectral method are made to show nice numerical stability and ability to preserve the integral invariant for long-time integration.展开更多
In this paper, a classical system of ordinary differential equations is built to describe a kind of n-dimensional quantum systems. The absorption spectrum and the density of the states for the system are defined from ...In this paper, a classical system of ordinary differential equations is built to describe a kind of n-dimensional quantum systems. The absorption spectrum and the density of the states for the system are defined from the points of quantum view and classical view. From the Birkhoffian form of the equations, a Birkhoffian symplectic scheme is derived for solving n-dimensional equations by using the generating function method. Besides the Birkhoffian structure- preserving, the new scheme is proven to preserve the discrete local energy conservation law of the system with zero vector f . Some numerical experiments for a 3-dimensional example show that the new scheme can simulate the general Birkhoffian system better than the implicit midpoint scheme, which is well known to be symplectic scheme for Hamiltonian system.展开更多
We propose a new multi-symplectic integrating scheme for the Korteweg-de Vries(KdV)equation.The new scheme is derived by concatenating spatial discretization of the multi-symplectic Fourier pseudospectral method with ...We propose a new multi-symplectic integrating scheme for the Korteweg-de Vries(KdV)equation.The new scheme is derived by concatenating spatial discretization of the multi-symplectic Fourier pseudospectral method with temporal discretization of the symplectic Euler scheme.The new scheme is explicit in the sense that it does not need to solve nonlinear algebraic equations.It is verified that the multi-symplectic semi-discretization of the KdV equation under periodic boundary conditions has N semi−discrete multi-symplectic conservation laws.We also prove that the full-discrete scheme has N full-discrete multi-symplectic conservation laws.Numerical experiments of the new scheme on the KdV equation are made to demonstrate the stability and other merits for long-time integration.展开更多
Symplectic scheme-shooting method (SSSM) is applied to solve the energy eigenvalues of anharmonic oscillators characterized by the potentials V(x)=λx 4 and V(x)=(1/2)x 2+λx 2α with α=2,3,4 and doubly anharmonic os...Symplectic scheme-shooting method (SSSM) is applied to solve the energy eigenvalues of anharmonic oscillators characterized by the potentials V(x)=λx 4 and V(x)=(1/2)x 2+λx 2α with α=2,3,4 and doubly anharmonic oscillators characterized by the potentials V(x)=(1/2)x 2+λ 1x 4 +λ 2x 6, and a high order symplectic scheme tailored to the "time"-dependent Hamiltonian function is presented. The numerical results illustrate that the energy eigenvalues of anharmonic oscillators with the symplectic scheme-shooting method are in good agreement with the numerical accurate ones obtained from the non-perturbative method by using an appropriately scaled basis for the expansion of each eigenfunction; and the energy eigenvalues of doubly anharmonic oscillators with the sympolectic scheme-shooting method are in good agreement with the exact ones and are better than the results obtained from the four-term asymptotic series. Therefore, the symplectic scheme-shooting method, which is very simple and is easy to grasp, is a good numerical algorithm.展开更多
Two kinds of symplectic schemes are proposed for the equations of vortex system in half plane.One is the Reflecting-method which is based on the symplectic schemes for the system in the whole plane.The other is constr...Two kinds of symplectic schemes are proposed for the equations of vortex system in half plane.One is the Reflecting-method which is based on the symplectic schemes for the system in the whole plane.The other is constructed directly according to the feature of the system.Aseries of numerical results are presented to show the effectiveness of our schemes.展开更多
The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order sy...The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order symplectic finite- difference time-domain (SFDTD) scheme for the first time. By splitting the fields on one-dimensional grid and using the nature of numerical plane-wave in finite-difference time-domain (FDTD), the identical dispersion relation can be obtained and proved between the one-dimensional and three-dimensional grids. An efficient plane-wave source is simulated on one-dimensional grid and a perfect match can be achieved for a plane-wave propagating at any angle forming an integer grid cell ratio. Numerical simulations show that the method is valid for SFDTD and the residual field in SF region is shrinked down to -300 dB.展开更多
In this paper, a multi-symplectic Hamiltonian formulation is presented for the coupled Schrdinger-Boussinesq equations (CSBE). Then, a multi-symplectic scheme of the CSBE is derived. The discrete conservation laws o...In this paper, a multi-symplectic Hamiltonian formulation is presented for the coupled Schrdinger-Boussinesq equations (CSBE). Then, a multi-symplectic scheme of the CSBE is derived. The discrete conservation laws of the Langmuir plasmon number and total perturbed number density are also proved. Numerical experiments show that the multi-symplectic scheme simulates the solitary waves for a long time, and preserves the conservation laws well.展开更多
The nature of infinite-dimensional Hamiltonian systems are studied for the purpose of further study on some generalized Hamiltonian systems equipped with a given Poisson bracket. From both theoretical and practical vi...The nature of infinite-dimensional Hamiltonian systems are studied for the purpose of further study on some generalized Hamiltonian systems equipped with a given Poisson bracket. From both theoretical and practical viewpoints, we summarize a general method of constructing symplectic-like difference schemes of these kinds of systems. This study provides a new algorithm for the application of the symplectic geometry method in numerical solutions of general evolution equations.展开更多
The multi-symplectic geometry for the GSDBM equation is presented in this paper. The multi-symplectic formulations for the GSDBM equation are presented and the local conservation laws are shown to correspond to certai...The multi-symplectic geometry for the GSDBM equation is presented in this paper. The multi-symplectic formulations for the GSDBM equation are presented and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of each formulation is exemplified by the multisymplectic Preissmann scheme. The numerical experiments are given, and the results verify the efficiency of the Preissmann scheme.展开更多
We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is ...We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is the dissipative algorithm and cannot maintain long-term energy conservation.Thus,a symplectic finite element method with energy conservation is constructed in this paper.A linear elastic system can be discretized into multiple elements,and a Hamiltonian system of each element can be constructed.The single element is discretized by the Galerkin method,and then the Hamiltonian system is constructed into the Birkhoffian system.Finally,all the elements are combined to obtain the vibration equation of the continuous system and solved by the symplectic difference scheme.Through the numerical experiments of the vibration response of the Bernoulli-Euler beam and composite plate,it is found that the vibration response solution and energy obtained with the algorithm are superior to those of the Runge-Kutta algorithm.The results show that the symplectic finite element method can keep energy conservation for a long time and has higher stability in solving the dynamic responses of linear elastic systems.展开更多
A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx...A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx 4).展开更多
Based on the principle of total energy conservation, we give two important algorithms, the total energy conservation algorithm and the symplectic algorithm, which are established for the spherical shallow water equati...Based on the principle of total energy conservation, we give two important algorithms, the total energy conservation algorithm and the symplectic algorithm, which are established for the spherical shallow water equations. Also, the relation between the two algorithms is analyzed and numerical tests show the efficiency of the algorithms.展开更多
The structure-preserving property, in both the time domain and the frequency domain, is an important index for evaluating validity of a numerical method. Even in the known structure-preserving methods such as the symp...The structure-preserving property, in both the time domain and the frequency domain, is an important index for evaluating validity of a numerical method. Even in the known structure-preserving methods such as the symplectic method, the inherent conser- vation law in the frequency domain is hardly conserved. By considering a mathematical pendulum model, a Stormer-Verlet scheme is first constructed in a Hamiltonian frame- work. The conservation law of the StSrmer-Verlet scheme is derived, including the total energy expressed in the time domain and periodicity in the frequency domain. To track the structure-preserving properties of the Stormer-Verlet scheme associated with the con- servation law, the motion of the mathematical pendulum is simulated with different time step lengths. The numerical results illustrate that the StSrmer-Verlet scheme can preserve the total energy of the model but cannot preserve periodicity at all. A phase correction is performed for the StSrmer-Verlet scheme. The results imply that the phase correction can improve the conservative property of periodicity of the Stormer-Verlet scheme.展开更多
Under quasispin scheme, a complete group theoretical classification of fermion states with symplectlc symmetry is proposed. Furthermore, the first and second order irreducible tensor operators are investigated in deta...Under quasispin scheme, a complete group theoretical classification of fermion states with symplectlc symmetry is proposed. Furthermore, the first and second order irreducible tensor operators are investigated in detail to approach the fermion states with explicit forms.展开更多
基金The project supported by the Special Funds for State Key Basic Research Projects under Grant No.G1999,032800
文摘A universal symplectic structure for a Newtonian system including nonconservative cases can be constructed in the framework of Birkhoffian generalization of Hamiltonian mechanics. In this paper the symplectic geometry structure of Birkhoffian system is discussed, then the symplecticity of Birkhoffian phase flow is presented. Based on these properties we give a way to construct symplectic schemes for Birkhoffian systems by using the generating function method.
基金Supported by the National Baslc Research Programme under Grant No 2005CB321703, and the National Natural Science Foundation of China under Grant Nos 40221503, 10471067 and 40405019.
文摘We investigate the multisymplectic Euler box scheme for the Korteweg-de Vries (KdV) equation. A new completely explicit six-point scheme is derived. Numerical experiments of the new scheme with comparisons to the Zabusky-Kruskal scheme, the multisymplectic 12-point scheme, the narrow box scheme and the spectral method are made to show nice numerical stability and ability to preserve the integral invariant for long-time integration.
基金Supported by National Nature Science Foundation of China under Grant No. 10701081
文摘In this paper, a classical system of ordinary differential equations is built to describe a kind of n-dimensional quantum systems. The absorption spectrum and the density of the states for the system are defined from the points of quantum view and classical view. From the Birkhoffian form of the equations, a Birkhoffian symplectic scheme is derived for solving n-dimensional equations by using the generating function method. Besides the Birkhoffian structure- preserving, the new scheme is proven to preserve the discrete local energy conservation law of the system with zero vector f . Some numerical experiments for a 3-dimensional example show that the new scheme can simulate the general Birkhoffian system better than the implicit midpoint scheme, which is well known to be symplectic scheme for Hamiltonian system.
基金by the National Natural Science Foundation of China under Grant No 10871099the National Basic Research Program of China under Grant No 2010AA012304.
文摘We propose a new multi-symplectic integrating scheme for the Korteweg-de Vries(KdV)equation.The new scheme is derived by concatenating spatial discretization of the multi-symplectic Fourier pseudospectral method with temporal discretization of the symplectic Euler scheme.The new scheme is explicit in the sense that it does not need to solve nonlinear algebraic equations.It is verified that the multi-symplectic semi-discretization of the KdV equation under periodic boundary conditions has N semi−discrete multi-symplectic conservation laws.We also prove that the full-discrete scheme has N full-discrete multi-symplectic conservation laws.Numerical experiments of the new scheme on the KdV equation are made to demonstrate the stability and other merits for long-time integration.
文摘Symplectic scheme-shooting method (SSSM) is applied to solve the energy eigenvalues of anharmonic oscillators characterized by the potentials V(x)=λx 4 and V(x)=(1/2)x 2+λx 2α with α=2,3,4 and doubly anharmonic oscillators characterized by the potentials V(x)=(1/2)x 2+λ 1x 4 +λ 2x 6, and a high order symplectic scheme tailored to the "time"-dependent Hamiltonian function is presented. The numerical results illustrate that the energy eigenvalues of anharmonic oscillators with the symplectic scheme-shooting method are in good agreement with the numerical accurate ones obtained from the non-perturbative method by using an appropriately scaled basis for the expansion of each eigenfunction; and the energy eigenvalues of doubly anharmonic oscillators with the sympolectic scheme-shooting method are in good agreement with the exact ones and are better than the results obtained from the four-term asymptotic series. Therefore, the symplectic scheme-shooting method, which is very simple and is easy to grasp, is a good numerical algorithm.
文摘Two kinds of symplectic schemes are proposed for the equations of vortex system in half plane.One is the Reflecting-method which is based on the symplectic schemes for the system in the whole plane.The other is constructed directly according to the feature of the system.Aseries of numerical results are presented to show the effectiveness of our schemes.
基金supported by the National Natural Science Foundation of China(Grant Nos.60931002 and 61101064)the Universities Natural Science Foundation of Anhui Province,China(Grant Nos.KJ2011A002 and 1108085J01)
文摘The method of splitting a plane-wave finite-difference time-domain (SP-FDTD) algorithm is presented for the initiation of plane-wave source in the total-field / scattered-field (TF/SF) formulation of high-order symplectic finite- difference time-domain (SFDTD) scheme for the first time. By splitting the fields on one-dimensional grid and using the nature of numerical plane-wave in finite-difference time-domain (FDTD), the identical dispersion relation can be obtained and proved between the one-dimensional and three-dimensional grids. An efficient plane-wave source is simulated on one-dimensional grid and a perfect match can be achieved for a plane-wave propagating at any angle forming an integer grid cell ratio. Numerical simulations show that the method is valid for SFDTD and the residual field in SF region is shrinked down to -300 dB.
基金the National Natural Science Foundation of China(Grant Nos.11271171,11001072,and 11101381)Natural Science Foundation of Fujian Province,China(Grant No.2011J01010)+1 种基金the Fundamental Research Funds for the Central Universities,Chinathe Natural Science Foundation of Huaqiao University,China(Grant No.10QZR21)
文摘In this paper, a multi-symplectic Hamiltonian formulation is presented for the coupled Schrdinger-Boussinesq equations (CSBE). Then, a multi-symplectic scheme of the CSBE is derived. The discrete conservation laws of the Langmuir plasmon number and total perturbed number density are also proved. Numerical experiments show that the multi-symplectic scheme simulates the solitary waves for a long time, and preserves the conservation laws well.
基金Acknowledgments. This work was supported by the China National Key Development Planning Project for Ba-sic Research (Abbreviation: 973 Project Grant No. G1999032801), the Chinese Academy of Sciences Key Innovation Direction Project (Grant No. KZCX2208)
文摘The nature of infinite-dimensional Hamiltonian systems are studied for the purpose of further study on some generalized Hamiltonian systems equipped with a given Poisson bracket. From both theoretical and practical viewpoints, we summarize a general method of constructing symplectic-like difference schemes of these kinds of systems. This study provides a new algorithm for the application of the symplectic geometry method in numerical solutions of general evolution equations.
基金Supported by the Differential Equation Innovation Team(CXTD003,2013XYZ19)
文摘The multi-symplectic geometry for the GSDBM equation is presented in this paper. The multi-symplectic formulations for the GSDBM equation are presented and the local conservation laws are shown to correspond to certain well-known Hamiltonian functionals. The multi-symplectic discretization of each formulation is exemplified by the multisymplectic Preissmann scheme. The numerical experiments are given, and the results verify the efficiency of the Preissmann scheme.
基金supported by the National Natural Science Foundation of China(Nos.12132001 and 52192632)。
文摘We propose a novel symplectic finite element method to solve the structural dynamic responses of linear elastic systems.For the dynamic responses of continuous medium structures,the traditional numerical algorithm is the dissipative algorithm and cannot maintain long-term energy conservation.Thus,a symplectic finite element method with energy conservation is constructed in this paper.A linear elastic system can be discretized into multiple elements,and a Hamiltonian system of each element can be constructed.The single element is discretized by the Galerkin method,and then the Hamiltonian system is constructed into the Birkhoffian system.Finally,all the elements are combined to obtain the vibration equation of the continuous system and solved by the symplectic difference scheme.Through the numerical experiments of the vibration response of the Bernoulli-Euler beam and composite plate,it is found that the vibration response solution and energy obtained with the algorithm are superior to those of the Runge-Kutta algorithm.The results show that the symplectic finite element method can keep energy conservation for a long time and has higher stability in solving the dynamic responses of linear elastic systems.
文摘A family of high_order accuracy explicit difference schemes for solving 2_dimension parabolic P.D.E. are constructed. Th e stability condition is r=Δt/Δx 2=Δt/Δy 2【1/2 and the truncation err or is O(Δt 3+Δx 4).
基金This project is supported by the National Key Planning Development Project for Basic tesearch(GrantNo.1999032801),the National Outstanding Youth Scientist Foundation of China(Grant No.49835109)and the Na-tional Natural Science Foundation of China(Grant
文摘Based on the principle of total energy conservation, we give two important algorithms, the total energy conservation algorithm and the symplectic algorithm, which are established for the spherical shallow water equations. Also, the relation between the two algorithms is analyzed and numerical tests show the efficiency of the algorithms.
基金the National Natural Science Foundation of China(Nos.11672241,11372253,and 11432010)the Astronautics Supporting Technology Foundation of China(No.2015-HT-XGD)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment(Nos.GZ1312 and GZ1605)
文摘The structure-preserving property, in both the time domain and the frequency domain, is an important index for evaluating validity of a numerical method. Even in the known structure-preserving methods such as the symplectic method, the inherent conser- vation law in the frequency domain is hardly conserved. By considering a mathematical pendulum model, a Stormer-Verlet scheme is first constructed in a Hamiltonian frame- work. The conservation law of the StSrmer-Verlet scheme is derived, including the total energy expressed in the time domain and periodicity in the frequency domain. To track the structure-preserving properties of the Stormer-Verlet scheme associated with the con- servation law, the motion of the mathematical pendulum is simulated with different time step lengths. The numerical results illustrate that the StSrmer-Verlet scheme can preserve the total energy of the model but cannot preserve periodicity at all. A phase correction is performed for the StSrmer-Verlet scheme. The results imply that the phase correction can improve the conservative property of periodicity of the Stormer-Verlet scheme.
基金Supported by the National Natural Science Foundation of China
文摘Under quasispin scheme, a complete group theoretical classification of fermion states with symplectlc symmetry is proposed. Furthermore, the first and second order irreducible tensor operators are investigated in detail to approach the fermion states with explicit forms.